forked from business-science/modeltime
-
Notifications
You must be signed in to change notification settings - Fork 0
/
_pkgdown.yml
202 lines (201 loc) · 5.8 KB
/
_pkgdown.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
url: https://business-science.github.io/modeltime/
template:
bootstrap: 5
# bslib:
# base_font:
# google: Roboto
# heading_font:
# google: Montserrat
# code_font:
# google: JetBrains Mono
params:
bootswatch: flatly
ganalytics: UA-76139189-2
navbar:
title: modeltime
left:
- icon: fa-home
href: index.html
- text: Getting Started
href: articles/getting-started-with-modeltime.html
- text: Articles
href: articles/index.html
menu:
- text: Getting Started
- text: Getting Started with Modeltime
href: articles/getting-started-with-modeltime.html
- text: '---'
- text: Forecasting Many Time Series (Scale)
- text: Global Model Forecasting
href: articles/modeling-panel-data.html
- text: Iterative (Nested) Forecasting
href: articles/nested-forecasting.html
- text: '---'
- text: Advanced Topics
- text: Autoregressive (Recursive) Forecasting
href: articles/recursive-forecasting.html
- text: Hyperparameter Tuning & Parallel Processing
href: articles/parallel-processing.html
- text: The Modeltime Spark Backend
href: articles/modeltime-spark.html
- text: '---'
- text: Algorithms
- text: Modeltime Algorithm Roadmap
href: articles/modeltime-model-list.html
- text: '---'
- text: Developers
- text: Extending Modeltime (Developer Tools)
href: articles/extending-modeltime.html
- text: API
href: reference/index.html
menu:
- text: API Functions
- icon: fa-home
text: Function Reference
href: reference/index.html
- text: '---'
- text: Change History
- text: News
href: news/index.html
- text: Ecosystem
menu:
- text: Forecast
- text: Modeltime (Forecasting)
href: https://business-science.github.io/modeltime/
- text: TimeTK (Time Series Analysis)
href: https://business-science.github.io/timetk/
- text: '---'
- text: Improve
- text: Modeltime Ensemble (Blending Forecasts)
href: https://business-science.github.io/modeltime.ensemble/
- text: Modeltime Resample (Backtesting)
href: https://business-science.github.io/modeltime.resample/
- text: '---'
- text: Scale
- text: Modeltime H2O (AutoML)
href: https://business-science.github.io/modeltime.h2o/
- text: Modeltime GluonTS (Deep Learning)
href: https://business-science.github.io/modeltime.gluonts/
- icon: fas fa-graduation-cap
text: Learn
href: https://university.business-science.io/p/ds4b-203-r-high-performance-time-series-forecasting/
right:
- icon: fab fa-github
href: https://github.com/business-science/modeltime
reference:
- title: Modeltime Workflow
desc: The main workflow functions for time series modeling.
- subtitle: Core Functions
contents:
- modeltime_table
- modeltime_calibrate
- modeltime_forecast
- modeltime_accuracy
- modeltime_refit
- modeltime_fit_workflowset
- subtitle: Recursive Forecast Prediction
contents:
- recursive
- panel_tail
- subtitle: Plotting & Tables
contents:
- starts_with("plot_modeltime")
- starts_with("table_modeltime")
- subtitle: Residual Analysis
contents:
- modeltime_residuals
- modeltime_residuals_test
- plot_modeltime_residuals
- title: Nested Forecasting
desc: Forecast many time series iteratively using "nested modeltime tables". Used
to apply models to each time series panel independently.
- subtitle: Core functions
contents:
- modeltime_nested_fit
- modeltime_nested_select_best
- modeltime_nested_refit
- modeltime_nested_forecast
- subtitle: Extractors
contents: starts_with("extract_")
- subtitle: Workflow
contents: extend_timeseries
- title: Algorithms
desc: The `parsnip`-adjacent algorithms that implement time series models.
- subtitle: Core Forecasting Methods
desc: These models come with modeltime.
contents:
- prophet_reg
- prophet_boost
- arima_reg
- arima_boost
- exp_smoothing
- seasonal_reg
- nnetar_reg
- subtitle: Additional Algorithms
desc: These algorithms have additional dependencies that can be installed with `dependencies
= TRUE`
contents:
- adam_reg
- temporal_hierarchy
- subtitle: Baseline Algorithms (Simple Methods)
contents:
- window_reg
- naive_reg
- title: Parallel Processing
contents:
- starts_with("parallel_")
- starts_with("control_")
- create_model_grid
- title: Modeltime Workflow Helpers
contents:
- combine_modeltime_tables
- add_modeltime_model
- update_modeltime_model
- update_modeltime_description
- pluck_modeltime_model
- pull_modeltime_residuals
- pull_parsnip_preprocessor
- title: Accuracy Metrics (Yardstick)
- subtitle: Metric Sets and Summarizers
contents:
- default_forecast_accuracy_metric_set
- summarize_accuracy_metrics
- subtitle: New Accuracy Metrics
contents:
- maape
- maape_vec
- title: Parameters (Dials)
desc: The `dials` parameter functions that support hyperparameter tuning with `tune`.
- subtitle: General Time Series
contents: seasonal_period
- subtitle: ARIMA
contents: starts_with("non_seasonal")
- subtitle: Exponential Smoothing
contents:
- error
- smooth_level
- subtitle: Prophet
contents: changepoint_num
- subtitle: NNETAR
contents: num_networks
- subtitle: ADAM
contents: use_constant
- subtitle: Temporal Hierachical Models
contents: combination_method
- title: Developer Tools
desc: Tools for extending `modeltime`.
contents:
- new_modeltime_bridge
- create_xreg_recipe
- juice_xreg_recipe
- parse_index_from_data
- get_model_description
- get_arima_description
- get_tbats_description
- title: Data
contents: starts_with("m750")
repo:
url:
home: https://github.com/business-science/modeltime
source: https://github.com/business-science/modeltime/blob/master/
issue: https://github.com/business-science/modeltime/issues/