-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference.py
198 lines (167 loc) · 7.63 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
from typing import Union, List, Tuple
import numba
import numpy as np
import torch
import torch.utils
import zarr
from numba import jit
from scipy.ndimage import distance_transform_cdt
from torch import autocast
from torch.nn.functional import sigmoid
from tqdm import tqdm
def scale_sigmoid(x: torch.Tensor) -> torch.Tensor:
"""Scale sigmoid to avoid numerical issues in high confidence fp16."""
return sigmoid(0.2 * x)
@jit(nopython=True)
def compute_connected_component_segmentation(hard_aff: np.ndarray) -> np.ndarray:
"""
Compute connected components from affinities.
Args:
hard_aff: The (thresholded, boolean) short range affinities. Shape: (3, x, y, z).
Returns:
The segmentation. Shape: (x, y, z).
"""
visited = np.zeros(tuple(hard_aff.shape[1:]), dtype=numba.boolean)
seg = np.zeros(tuple(hard_aff.shape[1:]), dtype=np.uint32)
cur_id = 1
for i in range(visited.shape[0]):
for j in range(visited.shape[1]):
for k in range(visited.shape[2]):
if hard_aff[:, i, j, k].any() and not visited[i, j, k]: # If foreground
cur_to_visit = [(i, j, k)]
visited[i, j, k] = True
while cur_to_visit:
x, y, z = cur_to_visit.pop()
seg[x, y, z] = cur_id
# Check all neighbors
if x + 1 < visited.shape[0] and hard_aff[0, x, y, z] and not visited[x + 1, y, z]:
cur_to_visit.append((x + 1, y, z))
visited[x + 1, y, z] = True
if y + 1 < visited.shape[1] and hard_aff[1, x, y, z] and not visited[x, y + 1, z]:
cur_to_visit.append((x, y + 1, z))
visited[x, y + 1, z] = True
if z + 1 < visited.shape[2] and hard_aff[2, x, y, z] and not visited[x, y, z + 1]:
cur_to_visit.append((x, y, z + 1))
visited[x, y, z + 1] = True
if x - 1 >= 0 and hard_aff[0, x - 1, y, z] and not visited[x - 1, y, z]:
cur_to_visit.append((x - 1, y, z))
visited[x - 1, y, z] = True
if y - 1 >= 0 and hard_aff[1, x, y - 1, z] and not visited[x, y - 1, z]:
cur_to_visit.append((x, y - 1, z))
visited[x, y - 1, z] = True
if z - 1 >= 0 and hard_aff[2, x, y, z - 1] and not visited[x, y, z - 1]:
cur_to_visit.append((x, y, z - 1))
visited[x, y, z - 1] = True
cur_id += 1
return seg
@torch.no_grad()
@autocast(device_type="cuda")
def patched_inference(
img: Union[np.ndarray, zarr.Array],
model: torch.nn.Module,
small_size: int = 128,
do_overlap: bool = True,
prediction_channels: int = 6,
divide: int = 1,
) -> np.ndarray:
"""
Perform patched inference with a model on an image.
Args:
img: The input image. Shape: (x, y, z, channel).
model: The model to use for predictions.
small_size: The size of the patches. Defaults to 128.
do_overlap: Whether to perform overlapping predictions. Defaults to True:
half of patch size for all 3 axes.
prediction_channels: The number of channels in the output (additional model output
dimensions are discarded). Defaults to 6 (3 short + 3 long range affinities).
divide: The divisor for the image. Typically, 1 or 255 if img in [0, 255]
Returns:
The full prediction. Shape: (channel, x, y, z).
"""
print(
f"Performing patched inference with do_overlap={do_overlap} for img of shape {img.shape} and dtype {img.dtype}")
img = img[:] # load into memory (expensive!)
patch_coordinates = get_coordinates(img.shape[:3], small_size, do_overlap)
single_pred_weight = get_single_pred_weight(do_overlap, small_size)
# to weight overlapping predictions lower close to the boundaries
weight_sum = np.zeros((1, *img.shape[:3]), dtype=np.float32)
weighted_pred = np.zeros((prediction_channels, *img.shape[:3]), dtype=np.float32)
device = next(model.parameters()).device
assert device.type != 'cpu'
for x, y, z in tqdm(patch_coordinates):
img_patch = torch.tensor(
np.moveaxis(img[x: x + small_size, y: y + small_size, z: z + small_size], -1, 0)[None]).half().to(
device) / divide
pred = scale_sigmoid(model(img_patch))[0, :prediction_channels]
weight_sum[:, x: x + small_size, y: y + small_size,
z: z + small_size] += single_pred_weight if do_overlap else 1
weighted_pred[:, x: x + small_size, y: y + small_size, z: z + small_size] += pred.cpu().numpy() * (
single_pred_weight[None] if do_overlap else 1)
del img # to save memory before division
# assert np.all(weight_sum > 0)
np.divide(weighted_pred, weight_sum, out=weighted_pred)
return weighted_pred
def get_coordinates(
shape: Tuple[int, int, int], small_size: int, do_overlap: bool
) -> List[Tuple[int, int, int]]:
"""
Get coordinates for cubes to be predicted.
Args:
shape: The shape of the input image (x, y, z).
small_size: The size of the patches.
do_overlap: Whether to perform overlapping predictions.
Returns:
List of (x, y, z) coordinates for prediction cubes.
"""
offsets = [get_offsets(s, small_size) for s in shape]
xyzs = [(x, y, z) for x in offsets[0] for y in offsets[1] for z in offsets[2]]
if do_overlap: # Add shifted cubes (half cube overlap)
offset = small_size // 2
xyzs_shifted = [
set((x + offset, y, z) for x, y, z in xyzs),
set((x, y + offset, z) for x, y, z in xyzs),
set((x, y, z + offset) for x, y, z in xyzs),
set((x + offset, y + offset, z) for x, y, z in xyzs),
set((x + offset, y, z + offset) for x, y, z in xyzs),
set((x, y + offset, z + offset) for x, y, z in xyzs),
set((x + offset, y + offset, z + offset) for x, y, z in xyzs),
]
xyzs_shifted = set(
(x, y, z)
for s in xyzs_shifted
for x, y, z in s
if x + small_size <= shape[0]
and y + small_size <= shape[1]
and z + small_size <= shape[2]
)
xyzs = list(set.union(set(xyzs), xyzs_shifted))
return xyzs
def get_offsets(big_size: int, small_size: int) -> List[int]:
"""
Calculate offsets for image patching.
Args:
big_size: The size of the whole image.
small_size: The size of the patches.
Returns:
List of offsets.
"""
offsets = list(range(0, big_size - small_size + 1, small_size))
if offsets[-1] != big_size - small_size:
offsets.append(big_size - small_size)
return offsets
def get_single_pred_weight(do_overlap: bool, small_size: int) -> Union[np.ndarray, None]:
"""
Get the weight for a single prediction.
Args:
do_overlap: Whether to perform overlapping predictions.
small_size: The size of the patches.
Returns:
The weight array for a single prediction, or None if no overlap.
"""
if do_overlap:
# The weight (confidence/expected quality) of the predictions:
# Low at the surface of the predicted cube, high in the center
pred_weight_helper = np.pad(np.ones((small_size,) * 3), 1, mode='constant')
return distance_transform_cdt(pred_weight_helper).astype(np.float32)[1:-1, 1:-1, 1:-1]
else:
return None