Skip to content

Student-WangZhengTao/SummerSchool-Vitis-AI

 
 

Repository files navigation

Vitis AI 实验: MNIST分类器

安装 Vitis AI

  1. 安装 docker

  2. 下载 Vitis-AI 2.5 的 docker 镜像

    sudo docker pull xilinx/vitis-ai:2.5
    
  3. 克隆 Vitis-AI 的 GitHub 仓库

    git clone https://github.com/Xilinx/Vitis-AI.git -b v2.5
  4. 克隆本仓库到 Vitis-AI 目录

    cd Vitis-AI
    git clone https://github.com/qixingzhang/SummerSchool-Vitis-AI.git
  5. 启动 Vitis AI

    sudo ./docker_run.sh xilinx/vitis-ai:2.5

    按照提示查看并同意License, 成功启动会看到下面的输出

使用 Vitis AI

  1. 激活 TensorFlow 2.x 的环境

    conda activate vitis-ai-tensorflow2
  2. (可选)训练模型

    float_model.h5 是一个训练好的模型,你也可以选择自己训练

    cd SummerSchool-Vitis-AI
    python train.py
  3. 量化

    ./1_quantize.sh

    脚本中调用了 vitis_ai_tf2_quantize.py, 使用 python 的 API 进行量化:

    • 首先加载模型并创建量化器对象
      float_model = tf.keras.models.load_model(args.model)
      quantizer = vitis_quantize.VitisQuantizer(float_model)
    • 加载数据集用于模型校准 (Calibration)
      (train_img, train_label), (test_img, test_label) = mnist.load_data()
      test_img = test_img.reshape(-1, 28, 28, 1) / 255
    • 量化模型, 需指定用作校准的数据集(calib_dataset参数), 可以使用部分的训练集或测试集,通常100 ~ 1000个就够了
      quantized_model = quantizer.quantize_model(calib_dataset=test_img)
    • 量化完之后模型依旧被保存为 .h5 格式
      quantized_model.save(os.path.join(args.output, args.name+'.h5'))
  4. 编译

    ./2_compile.sh

    脚本使用 vai_c_tensorflow2 命令进行模型的编译, 需指定以下参数:

    • --model 量化之后的模型
    • --arch 指定DPU架构,每个板卡都不一样, 可以在 /opt/vitis_ai/compiler/arch/DPUCZDX8G 目录下寻找
    • --output_dir 输出目录
    • --net_name 模型的名字

    输出的 .xmodel 文件被保存在compile_output 目录下

使用 DPU-PYNQ 部署模型

  1. 使用 PYNQ 2.7 或 3.0.1 版本的镜像启动板卡
  2. 在板卡上安装 pynq-dpu
    $ sudo pip3 install pynq-dpu --no-build-isolation
  3. notebooks/dpu_mnist_classifier.ipynbcompile_output/dpu_mnist_classifier.xmodel 上传到 jupyter 中,运行notebook

参考链接

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 90.3%
  • Python 7.4%
  • Shell 2.3%