The source code of machine learning model's API of Summasphere smart guide in order to complete Bangkit Capstone Project
Endpoint | Method | Body Sent (JSON) | Description |
---|---|---|---|
/api/summarize | POST | - mode (text, pdf, link) - model (bart, gemini) - text [optional] - file [optional] - url [optional] |
HTTP POST REQUEST for Summarization Task |
/api/analyzer | POST | - media (frontend, android) - mode (pdf, link) - text [optional] - file [optional] - url [optional] |
HTTP POST REQUEST for Topic Analyzer Task |
- Clone this repo
- Open terminal and go to fastapi-summasphere directory by typing
cd fastapi-summasphere
- Type
py -m venv env
to create python virtual environment - Activate python virtual environment
<!-- Windows --> env\Scripts\activate.bat <!-- Linux --> source env/bin/activate
- Type
pip install -r requirements.txt
to install neccesary library - Run the app
These examples run the server program (e.g Uvicorn), starting a single process, listening on all the IPs (0.0.0.0) on a predefined port (e.g. 80)
fastapi dev app.py <!-- For Production --> fastapi run OR uvicorn app.main:app --reload
- /api/summarize for URL
- /api/summarize for PDF
- /api/analyzer for URL
- /api/analyzer for PDF
- Liu, Y., & Lapata, M. (2019). Text Summarization with Pretrained Encoders. arXiv preprint arXiv:1908.08345. Retrieved from https://arxiv.org/abs/1908.08345
- Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., ... & Zettlemoyer, L. (2019). BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. arXiv preprint arXiv:1910.13461. Retrieved from https://arxiv.org/abs/1910.13461
- Fabbri, A., Li, I., She, T., Li, S., & Radev, D. (2019). Multi-News: A Large-Scale Multi-Document Summarization Dataset and Abstractive Hierarchical Model. arXiv preprint arXiv:1906.01749. Retrieved from https://arxiv.org/abs/1906.01749