forked from openai/universe-starter-agent
-
Notifications
You must be signed in to change notification settings - Fork 0
/
envs.py
277 lines (239 loc) · 11 KB
/
envs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import cv2
from gym.spaces.box import Box
import numpy as np
import gym
from gym import spaces
import logging
import universe
from universe import vectorized
from universe.wrappers import BlockingReset, GymCoreAction, EpisodeID, Unvectorize, Vectorize, Vision, Logger
from universe import spaces as vnc_spaces
from universe.spaces.vnc_event import keycode
import time
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
universe.configure_logging()
def create_env(env_id, client_id, remotes, **kwargs):
spec = gym.spec(env_id)
if spec.tags.get('flashgames', False):
return create_flash_env(env_id, client_id, remotes, **kwargs)
elif spec.tags.get('atari', False) and spec.tags.get('vnc', False):
return create_vncatari_env(env_id, client_id, remotes, **kwargs)
else:
# Assume atari.
assert "." not in env_id # universe environments have dots in names.
return create_atari_env(env_id)
def create_flash_env(env_id, client_id, remotes, **_):
env = gym.make(env_id)
env = Vision(env)
env = Logger(env)
env = BlockingReset(env)
reg = universe.runtime_spec('flashgames').server_registry
height = reg[env_id]["height"]
width = reg[env_id]["width"]
env = CropScreen(env, height, width, 84, 18)
env = FlashRescale(env)
keys = ['left', 'right', 'up', 'down', 'x']
if env_id == 'flashgames.NeonRace-v0':
# Better key space for this game.
keys = ['left', 'right', 'up', 'left up', 'right up', 'down', 'up x']
logger.info('create_flash_env(%s): keys=%s', env_id, keys)
env = DiscreteToFixedKeysVNCActions(env, keys)
env = EpisodeID(env)
env = DiagnosticsInfo(env)
env = Unvectorize(env)
env.configure(fps=5.0, remotes=remotes, start_timeout=15 * 60, client_id=client_id,
vnc_driver='go', vnc_kwargs={
'encoding': 'tight', 'compress_level': 0,
'fine_quality_level': 50, 'subsample_level': 3})
return env
def create_vncatari_env(env_id, client_id, remotes, **_):
env = gym.make(env_id)
env = Vision(env)
env = Logger(env)
env = BlockingReset(env)
env = GymCoreAction(env)
env = AtariRescale42x42(env)
env = EpisodeID(env)
env = DiagnosticsInfo(env)
env = Unvectorize(env)
logger.info('Connecting to remotes: %s', remotes)
fps = env.metadata['video.frames_per_second']
env.configure(remotes=remotes, start_timeout=15 * 60, fps=fps, client_id=client_id)
return env
def create_atari_env(env_id):
env = gym.make(env_id)
env = Vectorize(env)
env = AtariRescale42x42(env)
env = DiagnosticsInfo(env)
env = Unvectorize(env)
return env
def DiagnosticsInfo(env, *args, **kwargs):
return vectorized.VectorizeFilter(env, DiagnosticsInfoI, *args, **kwargs)
class DiagnosticsInfoI(vectorized.Filter):
def __init__(self, log_interval=503):
super(DiagnosticsInfoI, self).__init__()
self._episode_time = time.time()
self._last_time = time.time()
self._local_t = 0
self._log_interval = log_interval
self._episode_reward = 0
self._episode_length = 0
self._all_rewards = []
self._num_vnc_updates = 0
self._last_episode_id = -1
def _after_reset(self, observation):
logger.info('Resetting environment')
self._episode_reward = 0
self._episode_length = 0
self._all_rewards = []
return observation
def _after_step(self, observation, reward, done, info):
to_log = {}
if self._episode_length == 0:
self._episode_time = time.time()
self._local_t += 1
if info.get("stats.vnc.updates.n") is not None:
self._num_vnc_updates += info.get("stats.vnc.updates.n")
if self._local_t % self._log_interval == 0:
cur_time = time.time()
elapsed = cur_time - self._last_time
fps = self._log_interval / elapsed
self._last_time = cur_time
cur_episode_id = info.get('vectorized.episode_id', 0)
to_log["diagnostics/fps"] = fps
if self._last_episode_id == cur_episode_id:
to_log["diagnostics/fps_within_episode"] = fps
self._last_episode_id = cur_episode_id
if info.get("stats.gauges.diagnostics.lag.action") is not None:
to_log["diagnostics/action_lag_lb"] = info["stats.gauges.diagnostics.lag.action"][0]
to_log["diagnostics/action_lag_ub"] = info["stats.gauges.diagnostics.lag.action"][1]
if info.get("reward.count") is not None:
to_log["diagnostics/reward_count"] = info["reward.count"]
if info.get("stats.gauges.diagnostics.clock_skew") is not None:
to_log["diagnostics/clock_skew_lb"] = info["stats.gauges.diagnostics.clock_skew"][0]
to_log["diagnostics/clock_skew_ub"] = info["stats.gauges.diagnostics.clock_skew"][1]
if info.get("stats.gauges.diagnostics.lag.observation") is not None:
to_log["diagnostics/observation_lag_lb"] = info["stats.gauges.diagnostics.lag.observation"][0]
to_log["diagnostics/observation_lag_ub"] = info["stats.gauges.diagnostics.lag.observation"][1]
if info.get("stats.vnc.updates.n") is not None:
to_log["diagnostics/vnc_updates_n"] = info["stats.vnc.updates.n"]
to_log["diagnostics/vnc_updates_n_ps"] = self._num_vnc_updates / elapsed
self._num_vnc_updates = 0
if info.get("stats.vnc.updates.bytes") is not None:
to_log["diagnostics/vnc_updates_bytes"] = info["stats.vnc.updates.bytes"]
if info.get("stats.vnc.updates.pixels") is not None:
to_log["diagnostics/vnc_updates_pixels"] = info["stats.vnc.updates.pixels"]
if info.get("stats.vnc.updates.rectangles") is not None:
to_log["diagnostics/vnc_updates_rectangles"] = info["stats.vnc.updates.rectangles"]
if info.get("env_status.state_id") is not None:
to_log["diagnostics/env_state_id"] = info["env_status.state_id"]
if reward is not None:
self._episode_reward += reward
if observation is not None:
self._episode_length += 1
self._all_rewards.append(reward)
if done:
logger.info('Episode terminating: episode_reward=%s episode_length=%s', self._episode_reward, self._episode_length)
total_time = time.time() - self._episode_time
to_log["global/episode_reward"] = self._episode_reward
to_log["global/episode_length"] = self._episode_length
to_log["global/episode_time"] = total_time
to_log["global/reward_per_time"] = self._episode_reward / total_time
self._episode_reward = 0
self._episode_length = 0
self._all_rewards = []
return observation, reward, done, to_log
def _process_frame42(frame):
frame = frame[34:34+160, :160]
# Resize by half, then down to 42x42 (essentially mipmapping). If
# we resize directly we lose pixels that, when mapped to 42x42,
# aren't close enough to the pixel boundary.
frame = cv2.resize(frame, (80, 80))
frame = cv2.resize(frame, (42, 42))
frame = frame.mean(2)
frame = frame.astype(np.float32)
frame *= (1.0 / 255.0)
frame = np.reshape(frame, [42, 42, 1])
return frame
class AtariRescale42x42(vectorized.ObservationWrapper):
def __init__(self, env=None):
super(AtariRescale42x42, self).__init__(env)
self.observation_space = Box(0.0, 1.0, [42, 42, 1])
def _observation(self, observation_n):
return [_process_frame42(observation) for observation in observation_n]
class FixedKeyState(object):
def __init__(self, keys):
self._keys = [keycode(key) for key in keys]
self._down_keysyms = set()
def apply_vnc_actions(self, vnc_actions):
for event in vnc_actions:
if isinstance(event, vnc_spaces.KeyEvent):
if event.down:
self._down_keysyms.add(event.key)
else:
self._down_keysyms.discard(event.key)
def to_index(self):
action_n = 0
for key in self._down_keysyms:
if key in self._keys:
# If multiple keys are pressed, just use the first one
action_n = self._keys.index(key) + 1
break
return action_n
class DiscreteToFixedKeysVNCActions(vectorized.ActionWrapper):
"""
Define a fixed action space. Action 0 is all keys up. Each element of keys can be a single key or a space-separated list of keys
For example,
e=DiscreteToFixedKeysVNCActions(e, ['left', 'right'])
will have 3 actions: [none, left, right]
You can define a state with more than one key down by separating with spaces. For example,
e=DiscreteToFixedKeysVNCActions(e, ['left', 'right', 'space', 'left space', 'right space'])
will have 6 actions: [none, left, right, space, left space, right space]
"""
def __init__(self, env, keys):
super(DiscreteToFixedKeysVNCActions, self).__init__(env)
self._keys = keys
self._generate_actions()
self.action_space = spaces.Discrete(len(self._actions))
def _generate_actions(self):
self._actions = []
uniq_keys = set()
for key in self._keys:
for cur_key in key.split(' '):
uniq_keys.add(cur_key)
for key in [''] + self._keys:
split_keys = key.split(' ')
cur_action = []
for cur_key in uniq_keys:
cur_action.append(vnc_spaces.KeyEvent.by_name(cur_key, down=(cur_key in split_keys)))
self._actions.append(cur_action)
self.key_state = FixedKeyState(uniq_keys)
def _action(self, action_n):
# Each action might be a length-1 np.array. Cast to int to
# avoid warnings.
return [self._actions[int(action)] for action in action_n]
class CropScreen(vectorized.ObservationWrapper):
"""Crops out a [height]x[width] area starting from (top,left) """
def __init__(self, env, height, width, top=0, left=0):
super(CropScreen, self).__init__(env)
self.height = height
self.width = width
self.top = top
self.left = left
self.observation_space = Box(0, 255, shape=(height, width, 3))
def _observation(self, observation_n):
return [ob[self.top:self.top+self.height, self.left:self.left+self.width, :] if ob is not None else None
for ob in observation_n]
def _process_frame_flash(frame):
frame = cv2.resize(frame, (200, 128))
frame = frame.mean(2).astype(np.float32)
frame *= (1.0 / 255.0)
frame = np.reshape(frame, [128, 200, 1])
return frame
class FlashRescale(vectorized.ObservationWrapper):
def __init__(self, env=None):
super(FlashRescale, self).__init__(env)
self.observation_space = Box(0.0, 1.0, [128, 200, 1])
def _observation(self, observation_n):
return [_process_frame_flash(observation) for observation in observation_n]