forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_pytorch_onnx_caffe2.py
2534 lines (2091 loc) · 103 KB
/
test_pytorch_onnx_caffe2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Owner(s): ["module: onnx"]
from typing import Tuple
import io
import itertools
import sys
import unittest
import numpy as np
from debug_embed_params import run_embed_params
from torch import nn
from torch.autograd import Variable, function
from torch.nn.utils import rnn as rnn_utils
from torch.onnx import ExportTypes
import torch.onnx
import torch.onnx.operators
import torch.utils.model_zoo as model_zoo
# Import various models for testing
from torchvision.models.alexnet import alexnet
from torchvision.models.densenet import densenet121
from torchvision.models.inception import inception_v3
from torchvision.models.resnet import resnet50
from torchvision.models.vgg import vgg16, vgg16_bn, vgg19, vgg19_bn
from model_defs.squeezenet import SqueezeNet
from model_defs.super_resolution import SuperResolutionNet
from model_defs.srresnet import SRResNet
import model_defs.dcgan as dcgan
import model_defs.word_language_model as word_language_model
from model_defs.mnist import MNIST
from model_defs.lstm_flattening_result import LstmFlatteningResult
from model_defs.rnn_model_with_packed_sequence import RnnModelWithPackedSequence
from caffe2.python.operator_test.torch_integration_test import (generate_rois_rotated,
create_bbox_transform_inputs)
import onnx
import caffe2.python.onnx.backend as c2
from test_pytorch_common import skipIfTravis, skipIfNoLapack, skipIfNoCuda
from test_pytorch_common import BATCH_SIZE, RNN_BATCH_SIZE, RNN_SEQUENCE_LENGTH, RNN_INPUT_SIZE, RNN_HIDDEN_SIZE
from test_pytorch_common import skipIfUnsupportedOpsetVersion, skipIfUnsupportedMinOpsetVersion
import verify
skip = unittest.skip
def skipIfEmbed(func):
def wrapper(self):
if self.embed_params:
raise unittest.SkipTest("Skip embed_params verify test")
return func(self)
return wrapper
def skipIfNoEmbed(func):
def wrapper(self):
if not self.embed_params:
raise unittest.SkipTest("Skip debug embed_params test")
return func(self)
return wrapper
# def import_model(proto, input, workspace=None, use_gpu=True):
# model_def = onnx.ModelProto.FromString(proto)
# onnx.checker.check_model(model_def)
#
# if workspace is None:
# workspace = {}
# if isinstance(input, tuple):
# for i in range(len(input)):
# workspace[model_def.graph.input[i]] = input[i]
# else:
# workspace[model_def.graph.input[0]] = input
#
# caffe2_out_workspace = c2.run_model(
# init_graph=None,
# predict_graph=graph_def,
# inputs=workspace,
# use_gpu=use_gpu)
# caffe2_out = caffe2_out_workspace[0]
# return caffe2_out
def do_export(model, inputs, *args, **kwargs):
f = io.BytesIO()
out = torch.onnx._export(model, inputs, f, *args, **kwargs)
if isinstance(model, torch.jit.ScriptModule):
# Special case for common case of passing a single Tensor
if isinstance(inputs, torch.Tensor):
inputs = (inputs,)
out = model(*inputs)
return f.getvalue(), out
torch.set_default_tensor_type("torch.FloatTensor")
try:
import torch
except ImportError:
print("Cannot import torch, hence caffe2-torch test will not run.")
sys.exit(0)
model_urls = {
"alexnet": "https://s3.amazonaws.com/download.caffe2.ai/test_data/alexnet-owt-4df8aa71.pth",
"dcgan_b": "https://s3.amazonaws.com/pytorch/test_data/export/netG_bedroom_epoch_1-0649e76b.pth",
"dcgan_f": "https://s3.amazonaws.com/pytorch/test_data/export/netG_faces_epoch_49-d86035a6.pth",
"densenet121": "https://s3.amazonaws.com/download.caffe2.ai/test_data/densenet121-d66d3027.pth",
"inception_v3_google": "https://s3.amazonaws.com/download.caffe2.ai/test_data/inception_v3_google-1a9a5a14.pth",
"resnet50": "https://s3.amazonaws.com/download.caffe2.ai/test_data/resnet50-19c8e357.pth",
"srresNet": "https://s3.amazonaws.com/pytorch/demos/srresnet-e10b2039.pth",
"super_resolution": "https://s3.amazonaws.com/pytorch/test_data/export/superres_epoch100-44c6958e.pth",
"squeezenet1_0": "https://s3.amazonaws.com/download.caffe2.ai/test_data/squeezenet1_0-a815701f.pth",
"squeezenet1_1": "https://s3.amazonaws.com/download.caffe2.ai/test_data/squeezenet1_1-f364aa15.pth",
"vgg16": "https://s3.amazonaws.com/download.caffe2.ai/test_data/vgg16-397923af.pth",
"vgg19": "https://s3.amazonaws.com/download.caffe2.ai/test_data/vgg19-dcbb9e9d.pth",
}
class TestCaffe2Backend_opset9(unittest.TestCase):
from torch.onnx.symbolic_helper import _export_onnx_opset_version
opset_version = _export_onnx_opset_version
embed_params = False
def setUp(self):
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
np.random.seed(seed=0)
def convert_cuda(self, model, input):
cuda_model = model.cuda()
# input might be nested - we want to move everything to GPU
cuda_input = function._nested_map(
lambda o: isinstance(o, Variable) or isinstance(o, torch.Tensor),
lambda o: o.cuda())(input)
return cuda_model, cuda_input
def run_debug_test(self, model, train, batch_size, state_dict=None,
input=None, use_gpu=True,
operator_export_type=torch.onnx.OperatorExportTypes.ONNX):
"""
# TODO: remove this from the final release version
This test is for our debugging only for the case where
embed_params=False
"""
if not isinstance(model, torch.jit.ScriptModule):
model.train(train)
if state_dict is not None:
model.load_state_dict(state_dict)
# Either user specified input or random (deterministic) input
if input is None:
input = torch.randn(batch_size, 3, 224, 224, requires_grad=True)
if use_gpu:
model, input = self.convert_cuda(model, input)
onnxir, torch_out = do_export(model, input, export_params=self.embed_params, verbose=False,
do_constant_folding=False,
opset_version=self.opset_version,
keep_initializers_as_inputs=True,
add_node_names=False,
operator_export_type=operator_export_type)
if isinstance(torch_out, torch.autograd.Variable):
torch_out = (torch_out,)
caffe2_out = run_embed_params(onnxir, model, input, state_dict, use_gpu)
for _, (x, y) in enumerate(zip(torch_out, caffe2_out)):
np.testing.assert_almost_equal(x.data.cpu().numpy(), y, decimal=3)
def run_actual_test(self, model, train, batch_size, state_dict=None,
input=None, use_gpu=True, rtol=0.001, atol=1e-7,
do_constant_folding=True,
operator_export_type=torch.onnx.OperatorExportTypes.ONNX,
input_names=None, dynamic_axes=None,
remained_onnx_input_idx=None):
"""
This is what the user facing version will look like
"""
# set the training/test mode for the model
if not isinstance(model, torch.jit.ScriptModule):
model.train(train)
# use the pre-trained model params if available
if state_dict is not None:
model.load_state_dict(state_dict)
# Either user specified input or random (deterministic) input
if input is None:
input = torch.randn(batch_size, 3, 224, 224, requires_grad=True)
# GPU-ize the model, if requested
if use_gpu:
model, input = self.convert_cuda(model, input)
# Verify the model runs the same in Caffe2
verify.verify(model, input, c2, rtol=rtol, atol=atol,
do_constant_folding=do_constant_folding,
opset_version=self.opset_version,
keep_initializers_as_inputs=True,
operator_export_type=operator_export_type,
input_names=input_names,
dynamic_axes=dynamic_axes,
remained_onnx_input_idx=remained_onnx_input_idx)
def run_model_test(self, model, train, batch_size, state_dict=None,
input=None, use_gpu=True, rtol=0.001, atol=1e-7,
do_constant_folding=True,
operator_export_type=torch.onnx.OperatorExportTypes.ONNX,
input_names=None, dynamic_axes=None,
remained_onnx_input_idx=None):
use_gpu_ = torch.cuda.is_available() and use_gpu
# NOTE: do_constant_folding is turned on only when model has
# parameters embedded (which are needed for constant folding),
# i.e. for self.embed_params=True case. self.embed_params=True
# for the TestCaffe2BackendEmbed class defined at the bottom.
if self.embed_params:
self.run_actual_test(model, train, batch_size, state_dict, input,
use_gpu=use_gpu_, rtol=rtol, atol=atol,
do_constant_folding=do_constant_folding,
operator_export_type=operator_export_type,
input_names=input_names,
dynamic_axes=dynamic_axes,
remained_onnx_input_idx=remained_onnx_input_idx)
else:
self.run_debug_test(model, train, batch_size, state_dict, input,
use_gpu=use_gpu_, operator_export_type=operator_export_type)
def test_linear(self):
class MyModel(torch.nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.many_fc = nn.Sequential(
nn.Linear(4, 5, bias=True),
nn.ReLU(inplace=True),
nn.Linear(5, 6, bias=True),
nn.ReLU(inplace=True),
nn.Linear(6, 7, bias=True),
)
def forward(self, input):
return self.many_fc(input)
model = MyModel()
input = torch.randn(3, 4, requires_grad=True)
self.run_model_test(model, train=False, batch_size=0, input=input)
def test_onnx_export_with_parameter_renaming(self):
class SimpleFcNet(nn.Module):
def __init__(self):
super(SimpleFcNet, self).__init__()
self.fc1 = nn.Linear(5, 10)
def forward(self, input):
return self.fc1(input)
model = SimpleFcNet()
input = torch.randn(7, 5)
output = model(input)
f = io.BytesIO()
# Note that the export call explicitly sets the names of not just the input,
# but also the parameters. This test checks that the model can be loaded and
# executed in Caffe2 backend correctly.
torch.onnx._export(model, input, f, verbose=True, export_type=ExportTypes.ZIP_ARCHIVE,
input_names=["input1", "parameter1", "parameter2"],
keep_initializers_as_inputs=True)
f.seek(0)
model_c2 = c2.prepare_zip_archive(f)
result = model_c2.run(input.numpy())
np.testing.assert_almost_equal(output.data.cpu().numpy(), result[0], decimal=3)
def test_onnx_export_param_name_duplication(self):
class SimpleFcNet(nn.Module):
def __init__(self):
super(SimpleFcNet, self).__init__()
self.fc1 = nn.Linear(5, 10)
def forward(self, input):
return self.fc1(input)
model = SimpleFcNet()
input = torch.randn(7, 5)
output = model(input)
f = io.BytesIO()
# The export call explicitly sets the names of the input, and the first parameter.
# But note that the target first parameter name is the same as the second parameter name.
# This test checks that given this edge condition, the model can be loaded and executed
# in Caffe2 backend correctly.
torch.onnx._export(model, input, f, verbose=True, export_type=ExportTypes.ZIP_ARCHIVE,
input_names=["input1", "fc1.bias"],
keep_initializers_as_inputs=True)
f.seek(0)
model_c2 = c2.prepare_zip_archive(f)
result = model_c2.run(input.numpy())
np.testing.assert_almost_equal(output.data.cpu().numpy(), result[0], decimal=3)
def test_lstm_cell(self):
model = nn.LSTMCell(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE)
input = torch.randn(BATCH_SIZE, RNN_INPUT_SIZE)
h0 = torch.randn(BATCH_SIZE, RNN_HIDDEN_SIZE)
c0 = torch.randn(BATCH_SIZE, RNN_HIDDEN_SIZE)
self.run_model_test(model, train=False, batch_size=BATCH_SIZE, input=(input, (h0, c0)), use_gpu=False)
def test_gru_cell(self):
model = nn.GRUCell(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE)
input = torch.randn(BATCH_SIZE, RNN_INPUT_SIZE)
h0 = torch.randn(BATCH_SIZE, RNN_HIDDEN_SIZE)
self.run_model_test(model, train=False, batch_size=BATCH_SIZE, input=(input, h0), use_gpu=False)
def _dispatch_rnn_test(self, name, *args, **kwargs):
if name == "elman":
self._elman_rnn_test(*args, **kwargs)
if name == "lstm":
self._lstm_test(*args, **kwargs)
if name == "gru":
self._gru_test(*args, **kwargs)
def _elman_rnn_test(self, layers, nonlinearity, bidirectional,
initial_state, packed_sequence, dropout):
batch_first = True if packed_sequence == 2 else False
model = nn.RNN(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE,
layers,
nonlinearity=nonlinearity,
bidirectional=bidirectional,
dropout=dropout,
batch_first=batch_first)
if packed_sequence == 1:
model = RnnModelWithPackedSequence(model, False)
if packed_sequence == 2:
model = RnnModelWithPackedSequence(model, True)
def make_input(batch_size):
seq_lengths = np.random.randint(1, RNN_SEQUENCE_LENGTH + 1, size=batch_size)
seq_lengths = list(reversed(sorted(map(int, seq_lengths))))
inputs = [torch.randn(l, RNN_INPUT_SIZE) for l in seq_lengths]
inputs = rnn_utils.pad_sequence(inputs, batch_first=batch_first)
inputs = [inputs]
directions = 2 if bidirectional else 1
if initial_state:
h0 = torch.randn(directions * layers, batch_size, RNN_HIDDEN_SIZE)
inputs.append(h0)
if packed_sequence != 0:
inputs.append(torch.IntTensor(seq_lengths))
if len(inputs) == 1:
input = inputs[0]
else:
input = tuple(inputs)
return input
input = make_input(RNN_BATCH_SIZE)
self.run_model_test(model, train=False, batch_size=RNN_BATCH_SIZE, input=input, use_gpu=False, atol=1e-7)
# test that the model still runs with a different batch size
# (save the model with a batch_size of 1 with rnn with a variable batch size,
# otherwise expand will fail)
variable_batch_size_init_input = make_input(1)
# Constant folding works when model has parameters embedded. For this case, we need to disable it
onnxir, _ = do_export(model, variable_batch_size_init_input, keep_initializers_as_inputs=True,
do_constant_folding=False)
other_input = make_input(RNN_BATCH_SIZE + 1)
_ = run_embed_params(onnxir, model, other_input, use_gpu=False)
def _lstm_test(self, layers, bidirectional, initial_state,
packed_sequence, dropout):
batch_first = True if packed_sequence == 2 else False
model = LstmFlatteningResult(
RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, layers,
bidirectional=bidirectional, dropout=dropout, batch_first=batch_first)
if packed_sequence == 1:
model = RnnModelWithPackedSequence(model, False)
if packed_sequence == 2:
model = RnnModelWithPackedSequence(model, True)
def make_input(batch_size):
seq_lengths = np.random.randint(1, RNN_SEQUENCE_LENGTH + 1, size=batch_size)
seq_lengths = list(reversed(sorted(map(int, seq_lengths))))
inputs = [torch.randn(l, RNN_INPUT_SIZE) for l in seq_lengths]
inputs = rnn_utils.pad_sequence(inputs, batch_first=batch_first)
inputs = [inputs]
directions = 2 if bidirectional else 1
if initial_state:
h0 = torch.randn(directions * layers, batch_size, RNN_HIDDEN_SIZE)
c0 = torch.randn(directions * layers, batch_size, RNN_HIDDEN_SIZE)
inputs.append((h0, c0))
if packed_sequence != 0:
inputs.append(torch.IntTensor(seq_lengths))
if len(inputs) == 1:
input = inputs[0]
else:
input = tuple(inputs)
return input
input = make_input(RNN_BATCH_SIZE)
self.run_model_test(model, train=False, batch_size=RNN_BATCH_SIZE, input=input, use_gpu=False)
# test that the model still runs with a different batch size
# (save the model with a batch_size of 1 with rnn with a variable batch size,
# otherwise expand will fail)
variable_batch_size_init_input = make_input(1)
# Constant folding works when model has parameters embedded. For this case, we need to disable it
onnxir, _ = do_export(model, variable_batch_size_init_input, keep_initializers_as_inputs=True,
do_constant_folding=False)
other_input = make_input(RNN_BATCH_SIZE + 1)
_ = run_embed_params(onnxir, model, other_input, use_gpu=False)
def _gru_test(self, layers, bidirectional, initial_state,
packed_sequence, dropout):
batch_first = True if packed_sequence == 2 else False
model = nn.GRU(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, layers,
bidirectional=bidirectional, dropout=dropout, batch_first=batch_first)
if packed_sequence == 1:
model = RnnModelWithPackedSequence(model, False)
if packed_sequence == 2:
model = RnnModelWithPackedSequence(model, True)
def make_input(batch_size):
seq_lengths = np.random.randint(1, RNN_SEQUENCE_LENGTH + 1, size=batch_size)
seq_lengths = list(reversed(sorted(map(int, seq_lengths))))
inputs = [torch.randn(l, RNN_INPUT_SIZE) for l in seq_lengths]
inputs = rnn_utils.pad_sequence(inputs, batch_first=batch_first)
inputs = [inputs]
directions = 2 if bidirectional else 1
if initial_state:
h0 = torch.randn(directions * layers, batch_size, RNN_HIDDEN_SIZE)
inputs.append(h0)
if packed_sequence != 0:
inputs.append(torch.IntTensor(seq_lengths))
if len(inputs) == 1:
input = inputs[0]
else:
input = tuple(inputs)
return input
input = make_input(RNN_BATCH_SIZE)
self.run_model_test(model, train=False, batch_size=RNN_BATCH_SIZE, input=input, use_gpu=False)
# test that the model still runs with a different batch size
# (save the model with a batch_size of 1 with rnn with a variable batch size,
# otherwise expand will fail)
variable_batch_size_init_input = make_input(1)
# Constant folding works when model has parameters embedded. For this case, we need to disable it
onnxir, _ = do_export(model, variable_batch_size_init_input, keep_initializers_as_inputs=True,
do_constant_folding=False)
other_input = make_input(RNN_BATCH_SIZE + 1)
_ = run_embed_params(onnxir, model, other_input, use_gpu=False)
@unittest.skip("Disabled due to onnx optimizer deprecation")
def test_rnn_init_predict_split(self):
model = nn.LSTM(RNN_INPUT_SIZE, RNN_HIDDEN_SIZE, 3, bidirectional=True)
seq_lengths = np.random.randint(1, RNN_SEQUENCE_LENGTH + 1, size=7)
seq_lengths = list(reversed(sorted(map(int, seq_lengths))))
input = [torch.randn(l, RNN_INPUT_SIZE) for l in seq_lengths]
input = rnn_utils.pad_sequence(input)
# Test that we are correctly splitting between init and
# predict net. When we embed parameters, there should be more
# ops in the init net.
mp = onnx.ModelProto.FromString(do_export(model, input, export_params=self.embed_params,
keep_initializers_as_inputs=True,
do_constant_folding=False)[0])
prepared = c2.prepare(mp, device="CPU")
if self.embed_params:
assert len(prepared.init_net.op) == 950
assert len(prepared.predict_net.op) == 101
else:
assert len(prepared.init_net.op) == 83
assert len(prepared.predict_net.op) == 968
def test_alexnet(self):
state_dict = model_zoo.load_url(model_urls["alexnet"], progress=False)
self.run_model_test(alexnet(), train=False, batch_size=BATCH_SIZE,
state_dict=state_dict, atol=1e-3)
@skipIfNoCuda
def test_dcgan(self):
# dcgan is flaky on some seeds, see:
# https://github.com/ProjectToffee/onnx/pull/70
torch.manual_seed(1)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(1)
netD = dcgan._netD(1)
netD.apply(dcgan.weights_init)
input = torch.randn(BATCH_SIZE, 3, dcgan.imgsz, dcgan.imgsz)
self.run_model_test(netD, train=False, batch_size=BATCH_SIZE,
input=input)
netG = dcgan._netG(1)
netG.apply(dcgan.weights_init)
state_dict = model_zoo.load_url(model_urls["dcgan_b"], progress=False)
# state_dict = model_zoo.load_url(model_urls["dcgan_f"], progress=False)
noise = torch.randn(BATCH_SIZE, dcgan.nz, 1, 1).normal_(0, 1)
self.run_model_test(netG, train=False, batch_size=BATCH_SIZE,
input=noise, state_dict=state_dict, rtol=1e-2, atol=1e-6)
@unittest.skipIf(not torch.cuda.is_available(),
"model on net has cuda in it, awaiting fix")
def test_densenet(self):
state_dict = model_zoo.load_url(model_urls["densenet121"], progress=False)
self.run_model_test(densenet121(), train=False, batch_size=BATCH_SIZE,
state_dict=state_dict, atol=1e-7)
@skip("doesn't match exactly...")
# TODO: figure out the numerical instabilities
def test_inception(self):
x = torch.randn(BATCH_SIZE, 3, 299, 299, requires_grad=True)
# state_dict = model_zoo.load_url(model_urls["inception_v3_google"], progress=False)
state_dict = None
self.run_model_test(inception_v3(), train=False, batch_size=BATCH_SIZE,
state_dict=state_dict, input=x)
@skipIfNoEmbed
def test_resnet(self):
state_dict = model_zoo.load_url(model_urls["resnet50"], progress=False)
self.run_model_test(resnet50(), train=False, batch_size=BATCH_SIZE,
state_dict=state_dict, atol=1e-5)
def test_squeezenet(self):
sqnet_v1_1 = SqueezeNet(version=1.1)
state_dict = model_zoo.load_url(model_urls["squeezenet1_1"], progress=False)
# state_dict = model_zoo.load_url(model_urls["squeezenet1_0"], progress=False)
self.run_model_test(sqnet_v1_1, train=False, batch_size=BATCH_SIZE,
state_dict=state_dict)
# @skip("takes long to run, LAPACK needed for gpu")
@skipIfNoLapack
@unittest.skip("This model takes too much memory")
def test_srresnet(self):
super_resolution_net = SRResNet(
rescale_factor=4, n_filters=64, n_blocks=8)
state_dict = model_zoo.load_url(model_urls["srresNet"], progress=False)
x = torch.randn(1, 3, 224, 224, requires_grad=True)
self.run_model_test(super_resolution_net, train=False,
batch_size=1, state_dict=state_dict,
input=x, use_gpu=False)
@skipIfTravis
@skipIfNoLapack
@skipIfNoCuda
def test_super_resolution(self):
super_resolution_net = SuperResolutionNet(upscale_factor=3)
state_dict = model_zoo.load_url(model_urls["super_resolution"], progress=False)
x = torch.randn(1, 1, 224, 224, requires_grad=True)
self.run_model_test(super_resolution_net, train=False,
batch_size=BATCH_SIZE, state_dict=state_dict,
input=x, use_gpu=False, atol=1e-6)
@unittest.skip("This model takes too much memory")
def test_vgg16(self):
state_dict = model_zoo.load_url(model_urls["vgg16"], progress=False)
self.run_model_test(vgg16(), train=False, batch_size=BATCH_SIZE,
state_dict=state_dict)
@skip("disable to run tests faster...")
def test_vgg16_bn(self):
self.run_model_test(vgg16_bn(), train=False,
batch_size=BATCH_SIZE)
@skip("disable to run tests faster...")
def test_vgg19(self):
state_dict = model_zoo.load_url(model_urls["vgg19"], progress=False)
self.run_model_test(vgg19(), train=False, batch_size=BATCH_SIZE,
state_dict=state_dict)
@skip("disable to run tests faster...")
def test_vgg19_bn(self):
self.run_model_test(vgg19_bn(), train=False,
batch_size=BATCH_SIZE)
def run_word_language_model(self, model_name):
ntokens = 50
emsize = 5
nhid = 5
nlayers = 5
dropout = 0.2
tied = False
batchsize = 5
model = word_language_model.RNNModel(model_name, ntokens, emsize,
nhid, nlayers, dropout, tied,
batchsize)
x = torch.arange(0, ntokens).long().view(-1, batchsize)
# Only support CPU version, since tracer is not working in GPU RNN.
self.run_model_test(model, train=False, input=(x, model.hidden),
batch_size=batchsize, use_gpu=False)
@unittest.skip("Disabled due to onnx optimizer deprecation")
@skipIfUnsupportedOpsetVersion([10])
def test_word_language_model_RNN_TANH(self):
self.run_word_language_model("RNN_TANH")
@unittest.skip("Disabled due to onnx optimizer deprecation")
@skipIfUnsupportedOpsetVersion([10])
def test_word_language_model_RNN_RELU(self):
self.run_word_language_model("RNN_RELU")
@unittest.skip("Disabled due to onnx optimizer deprecation")
@skipIfUnsupportedOpsetVersion([10])
def test_word_language_model_LSTM(self):
self.run_word_language_model("LSTM")
@unittest.skip("Disabled due to onnx optimizer deprecation")
@skipIfUnsupportedOpsetVersion([10])
def test_word_language_model_GRU(self):
self.run_word_language_model("GRU")
def test_batchnorm1d_special(self):
c = torch.randn(BATCH_SIZE, 224)
model = nn.BatchNorm1d(224)
self.run_model_test(model, train=True, input=c, batch_size=BATCH_SIZE)
def test_batchnorm1d(self):
c = torch.randn(BATCH_SIZE, 224, 224)
model = nn.BatchNorm1d(224)
self.run_model_test(model, train=True, input=c, batch_size=BATCH_SIZE)
def test_batchnorm1d_noaffine(self):
c = torch.randn(BATCH_SIZE, 224)
model = nn.BatchNorm1d(224, affine=False)
self.run_model_test(model, train=False, input=c, batch_size=BATCH_SIZE)
def test_batchnorm2d_noaffine(self):
c = torch.randn(128, 128, 1, 1)
model = nn.BatchNorm2d(128, affine=False)
self.run_model_test(model, train=False, input=c, batch_size=BATCH_SIZE)
def test_batchnorm3d_noaffine(self):
c = torch.randn(128, 128, 1, 1, 1)
model = nn.BatchNorm3d(128, affine=False)
self.run_model_test(model, train=False, input=c, batch_size=BATCH_SIZE)
def test_constant(self):
c = torch.randn(BATCH_SIZE, 3, 224, 224)
class MyModel(torch.nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, input):
return input + c.type_as(input)
self.run_model_test(MyModel(), train=False, batch_size=BATCH_SIZE)
def test_consumed_bn(self):
underlying = nn.BatchNorm2d(3)
self.run_model_test(underlying, train=True, batch_size=BATCH_SIZE)
def _test_index_generic(self, fn):
class MyModel(torch.nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, input):
return fn(input)
m1 = torch.randn(3, 4, 5, 6, 7)
self.run_model_test(MyModel(), input=m1, train=False, batch_size=BATCH_SIZE)
def test_index_1d(self):
self._test_index_generic(lambda input: input[0])
@skipIfUnsupportedOpsetVersion([10])
def test_index_2d_1dimslice(self):
self._test_index_generic(lambda input: input[0:1, :])
@skipIfUnsupportedOpsetVersion([10])
def test_index_2d_sliceint(self):
self._test_index_generic(lambda input: input[1, :])
@skipIfUnsupportedOpsetVersion([10])
def test_index_2d_neg_slice(self):
self._test_index_generic(lambda input: input[0:-1, :])
@skipIfUnsupportedOpsetVersion([10])
def test_index_2d_2dimslice(self):
self._test_index_generic(lambda input: input[0:1, 0:1])
@skipIfUnsupportedOpsetVersion([10])
def test_index_2d_neg_slice2dim(self):
self._test_index_generic(lambda input: input[0:-1, 0:-1])
def test_tensor_index_1d(self):
self._test_index_generic(lambda input: input[torch.tensor([0, 2])])
def test_tensor_index_2d_1dconstant(self):
self._test_index_generic(lambda input: input[1, torch.tensor([0, 2])])
@skipIfUnsupportedOpsetVersion([10])
def test_tensor_index_2d_1dslice(self):
self._test_index_generic(lambda input: input[torch.tensor([0, 2]), 0:1])
@skipIfUnsupportedOpsetVersion([10])
def test_tensor_index_2d_1dslice_first(self):
self._test_index_generic(lambda input: input[1:3, torch.tensor([0, 2])])
def test_tensor_index_newaxis(self):
self._test_index_generic(lambda input: input[None, torch.tensor([0, 2])])
def test_tensor_index_advanced_indexing(self):
self._test_index_generic(
lambda input: input[:, torch.tensor([[0, 2], [1, 1]]), :, torch.tensor([2, 1]), torch.tensor([0, 3])])
@skipIfUnsupportedOpsetVersion([10])
def test_tensor_index_advanced_indexing_with_slice(self):
self._test_index_generic(lambda input: input[:, torch.tensor([0, 2]), None, 2:4, torch.tensor([[1, 3], [4, 0]])])
self._test_index_generic(lambda input: input[:, torch.tensor([0, 2]), torch.tensor([1]), 2:4, torch.tensor([[1], [4]])])
def test_tensor_index_advanced_indexing_consecutive(self):
self._test_index_generic(lambda input: input[:, torch.tensor([0, 2]), torch.tensor([[1, 3], [4, 0]]), None])
@skipIfUnsupportedMinOpsetVersion(9)
def test_tensor_index_advanced_indexing_masked(self):
self._test_index_generic(
lambda input: input[:, torch.tensor([1, 0, 1, 0], dtype=torch.uint8), torch.tensor([[1, 3], [4, 0]]), None])
def test_chunk(self):
class MyModel(torch.nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, input):
# TODO: Why index? This returns a tuple and test runner doesn't
# support tuple comparison.
return input.chunk(8, dim=2)[-1]
self.run_model_test(MyModel(), train=False, batch_size=BATCH_SIZE)
def test_sqrt(self):
class MyModel(torch.nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, input):
return input.sqrt()
input = torch.empty(BATCH_SIZE, 10, 10).uniform_(4, 9)
self.run_model_test(MyModel(), train=False, input=input, batch_size=BATCH_SIZE)
def test_rsqrt(self):
class MyModel(torch.nn.Module):
def forward(self, input):
return input.rsqrt()
input = torch.randn(4, 2, 3, requires_grad=True)
self.run_model_test(MyModel(), train=False, input=input, batch_size=BATCH_SIZE)
def test_log(self):
class MyModel(torch.nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, input):
return input.log()
input = torch.empty(BATCH_SIZE, 10, 10).uniform_(4, 9)
self.run_model_test(MyModel(), train=False, input=input, batch_size=BATCH_SIZE)
@skipIfUnsupportedMinOpsetVersion(9)
def test_erf(self):
class MyModel(torch.nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, input):
return input.erf()
input = torch.empty(BATCH_SIZE, 10, 10).uniform_(4, 9)
self.run_model_test(MyModel(), train=False, input=input, batch_size=BATCH_SIZE)
def test_trigonometry(self):
def test_func(name):
class MyModel(torch.nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, input):
return getattr(input, name)()
input = torch.empty(BATCH_SIZE, 10, 10).uniform_()
self.run_model_test(MyModel(), train=False, input=input, batch_size=BATCH_SIZE)
test_func("cos")
test_func("sin")
test_func("tan")
test_func("acos")
test_func("asin")
test_func("atan")
def test_addconstant(self):
class MyModel(torch.nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, input):
# TODO: Why index? This returns a tuple and test runner doesn't
# support tuple comparison.
return input + 1
self.run_model_test(MyModel(), train=False, batch_size=BATCH_SIZE)
def test_subconstant(self):
class MyModel(torch.nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, input):
# TODO: Why index? This returns a tuple and test runner doesn't
# support tuple comparison.
return input - 1
self.run_model_test(MyModel(), train=False, batch_size=BATCH_SIZE)
def test_arithmetic(self):
class ArithmeticModule(torch.nn.Module):
def forward(self, x):
x = x + 2
x = x - 4
x = x * 6
x = x / 8
return x
x = torch.randn(2, 3, 4)
self.run_model_test(ArithmeticModule(), input=x, train=False, batch_size=BATCH_SIZE)
def test_embedding(self):
model = nn.Embedding(10, 3, padding_idx=-1)
input = torch.LongTensor(list(range(10))[::-1])
self.run_model_test(model, train=False, input=input, batch_size=BATCH_SIZE)
def test_constantpad2d(self):
model = nn.ConstantPad2d((1, 2, 3, 4), 3.5)
self.run_model_test(model, train=False, batch_size=BATCH_SIZE)
def test_reflectionpad2d(self):
model = nn.ReflectionPad2d((1, 2, 3, 4))
self.run_model_test(model, train=False, batch_size=BATCH_SIZE)
def test_replicationpad2d(self):
model = nn.ReplicationPad2d((1, 2, 3, 4))
self.run_model_test(model, train=False, batch_size=BATCH_SIZE)
def test_maxpool2d(self):
model = nn.MaxPool2d(5, padding=(1, 2))
self.run_model_test(model, train=False, batch_size=BATCH_SIZE)
def test_maxpool2d_single_padding(self):
model = nn.MaxPool2d(5, padding=2)
self.run_model_test(model, train=False, batch_size=BATCH_SIZE)
@skipIfUnsupportedOpsetVersion([10])
def test_maxpool1d_ceil(self):
model = nn.MaxPool1d(3, 2, ceil_mode=True)
x = torch.randn(20, 16, 50, requires_grad=True)
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
@skipIfUnsupportedOpsetVersion([10])
def test_maxpool2d_ceil(self):
model = nn.MaxPool2d(3, 2, ceil_mode=True)
x = torch.randn(20, 16, 50, 32, requires_grad=True)
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
@skipIfUnsupportedOpsetVersion([10])
def test_maxpool3d_ceil(self):
model = nn.MaxPool3d(3, 2, ceil_mode=True)
x = torch.randn(20, 16, 50, 44, 31, requires_grad=True)
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
@unittest.skip("C2 and PyTorch have small difference in padding implementation")
def test_avgpool2d(self):
model = nn.AvgPool2d(5, padding=(2))
self.run_model_test(model, train=False, batch_size=BATCH_SIZE)
def test_avgpool2d_with_count_include_pad_set_false(self):
model = nn.AvgPool2d(7, padding=(2), count_include_pad=False)
self.run_model_test(model, train=False, batch_size=BATCH_SIZE)
def test_avgpool2d_with_count_include_pad_set_true(self):
model = nn.AvgPool2d(7, padding=(2), count_include_pad=True)
self.run_model_test(model, train=False, batch_size=BATCH_SIZE)
def test_avgpool2d_no_padding(self):
model = nn.AvgPool2d(5)
self.run_model_test(model, train=False, batch_size=BATCH_SIZE)
@unittest.skip("Disabled due to onnx optimizer deprecation")
@skipIfUnsupportedOpsetVersion([10])
def test_avg_pool1D_ceil(self):
model = torch.nn.AvgPool1d(3, 2, ceil_mode=True)
x = torch.randn(1, 1, 7, requires_grad=True)
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
@skipIfUnsupportedOpsetVersion([10])
def test_avg_pool2D_ceil(self):
model = torch.nn.AvgPool2d(3, 2, ceil_mode=True)
x = torch.randn(20, 16, 50, 32, requires_grad=True)
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
@unittest.skip("Disabled due to onnx optimizer deprecation")
@skipIfUnsupportedOpsetVersion([10])
def test_avg_pool3D_ceil(self):
model = torch.nn.AvgPool3d(3, 2, ceil_mode=True)
x = torch.randn(20, 16, 50, 44, 31, requires_grad=True)
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
def test_adaptive_avg_pool1D(self):
model = torch.nn.AdaptiveAvgPool1d((5))
x = torch.randn(20, 16, 50, requires_grad=True)
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
def test_adaptive_avg_pool2D(self):
model = torch.nn.AdaptiveAvgPool2d((5, 4))
x = torch.randn(20, 16, 50, 32, requires_grad=True)
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
def test_adaptive_avg_pool3D(self):
model = torch.nn.AdaptiveAvgPool3d((5, 4, 3))
x = torch.randn(20, 16, 50, 44, 30, requires_grad=True)
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
@skipIfUnsupportedMinOpsetVersion(8)
def test_adaptive_max_pool1D(self):
model = torch.nn.AdaptiveMaxPool1d((5))
x = torch.randn(20, 16, 50, requires_grad=True)
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
@skipIfUnsupportedMinOpsetVersion(8)
def test_adaptive_max_pool2D(self):
model = torch.nn.AdaptiveMaxPool2d((5, 4))
x = torch.randn(20, 16, 50, 32, requires_grad=True)
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
@skipIfUnsupportedMinOpsetVersion(8)
def test_adaptive_max_pool3D(self):
model = torch.nn.AdaptiveMaxPool3d((5, 4, 3))
x = torch.randn(20, 16, 50, 44, 30, requires_grad=True)
self.run_model_test(model, train=False, input=x, batch_size=BATCH_SIZE)
def test_weight_norm(self):
model = nn.utils.weight_norm(nn.Conv1d(1, 1, 3))
input = torch.randn(1, 1, 5, requires_grad=True)
self.run_model_test(
model, train=True, batch_size=0, input=input, use_gpu=False
)
def test_mnist(self):
model = MNIST()
input = torch.randn(BATCH_SIZE, 1, 28, 28)
state_dict = None
# TODO: test with state_dict
self.run_model_test(model, train=False, input=input, batch_size=BATCH_SIZE,
state_dict=state_dict)
def test_mm(self):
class MyModel(torch.nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, m1, m2):
return torch.mm(m1, m2)
m1 = torch.randn(3, 4)
m2 = torch.randn(4, 5)
self.run_model_test(MyModel(), train=False, input=(m1, m2), batch_size=BATCH_SIZE, use_gpu=False)
def test_addmm(self):
class MyModel(torch.nn.Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, ma, m1, m2):
return torch.addmm(ma, m1, m2)
ma = torch.randn(5)
m1 = torch.randn(3, 4)
m2 = torch.randn(4, 5)
self.run_model_test(MyModel(), train=False, input=(ma, m1, m2), batch_size=BATCH_SIZE, use_gpu=False)
def test_fuse_addmm(self):
class AddmmModel(torch.nn.Module):
def forward(self, x):
return torch.mm(x, x) + x
x = torch.randn(3, 3)
self.run_model_test(AddmmModel(), train=False, input=x, batch_size=BATCH_SIZE, use_gpu=False)
def test_scalar_type(self):
class ArithmeticModel(torch.nn.Module):
def forward(self, x):
return x.size(0) * 2 * x
x = torch.ones(2, 3, dtype=torch.float32)
self.run_model_test(ArithmeticModel(), input=x, train=False, batch_size=BATCH_SIZE)
class ReciprocalModel(torch.nn.Module):
def forward(self, x):
return torch.reciprocal(x)
x = torch.tensor([2.0, 4.0], dtype=torch.double)
self.run_model_test(ReciprocalModel(), input=x, train=False, batch_size=BATCH_SIZE)
class ComparisonModel(torch.nn.Module):
def forward(self, x, y):