forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_verify.py
109 lines (87 loc) · 3.32 KB
/
test_verify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Owner(s): ["module: onnx"]
import torch
from torch.autograd import Function
from torch.nn import Module, Parameter
import caffe2.python.onnx.backend as backend
from verify import verify
from test_pytorch_common import TestCase, run_tests
class TestVerify(TestCase):
maxDiff = None
def assertVerifyExpectFail(self, *args, **kwargs):
try:
verify(*args, **kwargs)
except AssertionError as e:
if str(e):
# substring a small piece of string because the exact message
# depends on system's formatting settings
# self.assertExpected(str(e)[:60])
# NB: why we comment out the above check? because numpy keeps
# changing the error format, and we have to keep updating the
# expect files let's relax this constraint
return
else:
raise
# Don't put this in the try block; the AssertionError will catch it
self.assertTrue(False, msg="verify() did not fail when expected to")
def test_result_different(self):
class BrokenAdd(Function):
@staticmethod
def symbolic(g, a, b):
return g.op("Add", a, b)
@staticmethod
def forward(ctx, a, b):
return a.sub(b) # yahaha! you found me!
class MyModel(Module):
def forward(self, x, y):
return BrokenAdd().apply(x, y)
x = torch.tensor([1, 2])
y = torch.tensor([3, 4])
self.assertVerifyExpectFail(MyModel(), (x, y), backend)
def test_jumbled_params(self):
class MyModel(Module):
def __init__(self):
super(MyModel, self).__init__()
def forward(self, x):
y = x * x
self.param = Parameter(torch.tensor([2.0]))
return y
x = torch.tensor([1, 2])
with self.assertRaisesRegex(RuntimeError, "state_dict changed"):
verify(MyModel(), x, backend)
def test_dynamic_model_structure(self):
class MyModel(Module):
def __init__(self):
super(MyModel, self).__init__()
self.iters = 0
def forward(self, x):
if self.iters % 2 == 0:
r = x * x
else:
r = x + x
self.iters += 1
return r
x = torch.tensor([1, 2])
self.assertVerifyExpectFail(MyModel(), x, backend)
def test_embedded_constant_difference(self):
class MyModel(Module):
def __init__(self):
super(MyModel, self).__init__()
self.iters = 0
def forward(self, x):
r = x[self.iters % 2]
self.iters += 1
return r
x = torch.tensor([[1, 2], [3, 4]])
self.assertVerifyExpectFail(MyModel(), x, backend)
def test_explicit_test_args(self):
class MyModel(Module):
def forward(self, x):
if x.data.sum() == 1.0:
return x + x
else:
return x * x
x = torch.tensor([[6, 2]])
y = torch.tensor([[2, -1]])
self.assertVerifyExpectFail(MyModel(), x, backend, test_args=[(y,)])
if __name__ == "__main__":
run_tests()