forked from type-theory/type-theory-study-group
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathQuicksort.idr
98 lines (79 loc) · 2.78 KB
/
Quicksort.idr
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
module Quicksort
%default total
(<=) : Nat -> Nat -> Type
Z <= n = Unit
(S n) <= Z = Void
(S n) <= (S m) = n <= m
nlte : Nat -> Nat -> Type
nlte = (<=)
lteSucc : n <= m -> n <= S m
lteSucc {n = Z} {m = m} p = p
lteSucc {n = (S k)} {m = (S j)} p = (lteSucc {n=k} {m=j}) p
lteRefl : n <= n
lteRefl {n = Z} = ()
lteRefl {n = (S k)} = lteRefl {n = k}
lteTrans : i <= j -> j <= k -> i <= k
lteTrans {i=Z} {j=j} _ _ = ()
lteTrans {i=(S i')} {j=(S j')} {k = (S k')} x y = lteTrans {i = i'} {j = j'} {k = k'} x y
filterLemma : length (filter p x) <= length x
filterLemma {x = []} {p = p} = ()
filterLemma {x = (x :: xs)} {p = p} with (p x)
filterLemma {x = (x :: xs)} {p = p} | False = lteSucc filterLemma
filterLemma {x = (x :: xs)} {p = p} | True = filterLemma
qsort' : .(n : Nat) -> (l : List Nat) -> .(length l <= n) -> List Nat
qsort' n [] p = []
qsort' (S n) (a :: x) p =
qsort' n (filter (<= a) x) p1
++ [a]
++ qsort' n (filter (> a) x) p2
where
p1 =
let fl = the (length (filter (<= a) x) <= length x) filterLemma
in lteTrans {i = length (filter (<= a) x)} {j = length x} {k = n} fl p
p2 =
let fl = the (length (filter (> a) x) <= length x) filterLemma
in lteTrans {i = length (filter (> a) x)} {j = length x} {k = n} fl p
qsort : (l : List Nat) -> List Nat
qsort l = qsort' (length l) l lteRefl
-- naiveQSort : List Nat -> List Nat
-- naiveQSort [] = []
-- naiveQSort (x :: xs) =
-- naiveQSort (filter (<= x) xs)
-- ++ [x]
-- ++ naiveQSort (filter (> x) xs)
main : IO ()
main = putStrLn . show . qsort $ [1,56,3,23,54,23,3,2,1]
sorted : List Nat -> Type
sorted [] = Unit
sorted [a] = Unit
sorted (x :: y :: xs) = (x <= y, sorted (y :: xs))
occs : Nat -> List Nat -> Nat
occs a [] = 0
occs a (b :: xs) with (a == b)
occs a (b :: xs) | True = 1 + occs a xs
occs a (b :: xs) | False = occs a xs
perm : List Nat -> List Nat -> Nat -> Type
perm l l' a = (occs a l = occs a l')
mem : a -> List a -> Type
mem x [] = Void
mem x (y :: xs) = Either (x = y) (mem x xs)
theorem : {p : length l <= m} -> (sorted (qsort' m l p), (a : Nat) -> perm l (qsort' m l p) a)
subS : S k <= S j = True -> k <= j = True
subS {k = Z} {j = Z} prf = Refl
subS {k = Z} {j = S k} prf = Refl
subS {k = S k} {j = Z} Refl impossible
subS {k = S k} {j = S j} prf = subS {k = S k} {j = S j} ?prf1
where
want : S k <= S j = True
infix 6 ~<=
(~<=) : Nat -> Nat -> Bool
(~<=) x y = x < y || x == y
blah : (k : Nat) -> (j : Nat) -> ((S k) ~<= (S j)) = (k ~<= j)
lemma1 : (x ~<= y = True) -> nlte x y
lemma1 {x = Z} {y = Z} prf = ()
lemma1 {x = Z} {y = S k} prf = ()
lemma1 {x = S k} {y = Z} Refl impossible
lemma1 {x = S k} {y = S j} prf = lemma1 rhs
where
rhs : (k < j || k == j) = True
-- rhs = rewrite blah k j in prf