-
Notifications
You must be signed in to change notification settings - Fork 43
/
cell_detection.py
1118 lines (991 loc) · 44.1 KB
/
cell_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
# CellViT Inference Method for Patch-Wise Inference on a patches test set/Whole WSI
#
# Detect Cells with our Networks
# Patches dataset needs to have the follwoing requirements:
# Patch-Size must be 1024, with overlap of 64
#
# We provide preprocessing code here: ./preprocessing/patch_extraction/main_extraction.py
#
# @ Fabian Hörst, fabian.hoerst@uk-essen.de
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen
import inspect
import os
import sys
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.insert(0, parentdir)
parentdir = os.path.dirname(parentdir)
sys.path.insert(0, parentdir)
import argparse
import logging
import uuid
import warnings
from collections import deque
from pathlib import Path
from typing import List, Tuple, Union
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
import tqdm
import ujson
from einops import rearrange
from pandarallel import pandarallel
# from PIL import Image
from shapely import strtree
from shapely.errors import ShapelyDeprecationWarning
from shapely.geometry import Polygon, MultiPolygon
# from skimage.color import rgba2rgb
from torch.utils.data import DataLoader
from torchvision import transforms as T
from cell_segmentation.datasets.cell_graph_datamodel import CellGraphDataWSI
from cell_segmentation.utils.template_geojson import (
get_template_point,
get_template_segmentation,
)
from datamodel.wsi_datamodel import WSI
from models.segmentation.cell_segmentation.cellvit import (
CellViT,
CellViT256,
CellViTSAM,
)
from models.segmentation.cell_segmentation.cellvit_shared import (
CellViT256Shared,
CellViTSAMShared,
CellViTShared,
)
from preprocessing.encoding.datasets.patched_wsi_inference import PatchedWSIInference
from utils.file_handling import load_wsi_files_from_csv
from utils.logger import Logger
from utils.tools import unflatten_dict, get_size_of_dict
warnings.filterwarnings("ignore", category=ShapelyDeprecationWarning)
pandarallel.initialize(progress_bar=False, nb_workers=12)
# color setup
COLOR_DICT = {
1: [255, 0, 0],
2: [34, 221, 77],
3: [35, 92, 236],
4: [254, 255, 0],
5: [255, 159, 68],
}
TYPE_NUCLEI_DICT = {
1: "Neoplastic",
2: "Inflammatory",
3: "Connective",
4: "Dead",
5: "Epithelial",
}
class CellSegmentationInference:
def __init__(
self,
model_path: Union[Path, str],
gpu: int,
enforce_mixed_precision: bool = False,
) -> None:
"""Cell Segmentation Inference class.
After setup, a WSI can be processed by calling process_wsi method
Args:
model_path (Union[Path, str]): Path to model checkpoint
gpu (int): CUDA GPU id to use
enforce_mixed_precision (bool, optional): Using PyTorch autocasting with dtype float16 to speed up inference. Also good for trained amp networks.
Can be used to enforce amp inference even for networks trained without amp. Otherwise, the network setting is used.
Defaults to False.
"""
self.model_path = Path(model_path)
self.device = f"cuda:{gpu}"
self.__instantiate_logger()
self.__load_model()
self.__load_inference_transforms()
self.__setup_amp(enforce_mixed_precision=enforce_mixed_precision)
def __instantiate_logger(self) -> None:
"""Instantiate logger
Logger is using no formatters. Logs are stored in the run directory under the filename: inference.log
"""
logger = Logger(
level="INFO",
)
self.logger = logger.create_logger()
def __load_model(self) -> None:
"""Load model and checkpoint and load the state_dict"""
self.logger.info(f"Loading model: {self.model_path}")
model_checkpoint = torch.load(self.model_path, map_location="cpu")
# unpack checkpoint
self.run_conf = unflatten_dict(model_checkpoint["config"], ".")
self.model = self.__get_model(model_type=model_checkpoint["arch"])
self.logger.info(
self.model.load_state_dict(model_checkpoint["model_state_dict"])
)
self.model.eval()
self.model.to(self.device)
def __get_model(
self, model_type: str
) -> Union[
CellViT,
CellViTShared,
CellViT256,
CellViT256Shared,
CellViTSAM,
CellViTSAMShared,
]:
"""Return the trained model for inference
Args:
model_type (str): Name of the model. Must either be one of:
CellViT, CellViTShared, CellViT256, CellViT256Shared, CellViTSAM, CellViTSAMShared
Returns:
Union[CellViT, CellViTShared, CellViT256, CellViT256Shared, CellViTSAM, CellViTSAMShared]: Model
"""
implemented_models = [
"CellViT",
"CellViTShared",
"CellViT256",
"CellViT256Shared",
"CellViTSAM",
"CellViTSAMShared",
]
if model_type not in implemented_models:
raise NotImplementedError(
f"Unknown model type. Please select one of {implemented_models}"
)
if model_type in ["CellViT", "CellViTShared"]:
if model_type == "CellViT":
model_class = CellViT
elif model_type == "CellViTShared":
model_class = CellViTShared
model = model_class(
num_nuclei_classes=self.run_conf["data"]["num_nuclei_classes"],
num_tissue_classes=self.run_conf["data"]["num_tissue_classes"],
embed_dim=self.run_conf["model"]["embed_dim"],
input_channels=self.run_conf["model"].get("input_channels", 3),
depth=self.run_conf["model"]["depth"],
num_heads=self.run_conf["model"]["num_heads"],
extract_layers=self.run_conf["model"]["extract_layers"],
regression_loss=self.run_conf["model"].get("regression_loss", False),
)
elif model_type in ["CellViT256", "CellViT256Shared"]:
if model_type == "CellViT256":
model_class = CellViT256
elif model_type == "CellViTVIT256Shared":
model_class = CellViT256Shared
model = model_class(
model256_path=None,
num_nuclei_classes=self.run_conf["data"]["num_nuclei_classes"],
num_tissue_classes=self.run_conf["data"]["num_tissue_classes"],
regression_loss=self.run_conf["model"].get("regression_loss", False),
)
elif model_type in ["CellViTSAM", "CellViTSAMShared"]:
if model_type == "CellViTSAM":
model_class = CellViTSAM
elif model_type == "CellViTSAMShared":
model_class = CellViTSAMShared
model = model_class(
model_path=None,
num_nuclei_classes=self.run_conf["data"]["num_nuclei_classes"],
num_tissue_classes=self.run_conf["data"]["num_tissue_classes"],
vit_structure=self.run_conf["model"]["backbone"],
regression_loss=self.run_conf["model"].get("regression_loss", False),
)
return model
def __load_inference_transforms(self):
"""Load the inference transformations from the run_configuration"""
self.logger.info("Loading inference transformations")
transform_settings = self.run_conf["transformations"]
if "normalize" in transform_settings:
mean = transform_settings["normalize"].get("mean", (0.5, 0.5, 0.5))
std = transform_settings["normalize"].get("std", (0.5, 0.5, 0.5))
else:
mean = (0.5, 0.5, 0.5)
std = (0.5, 0.5, 0.5)
self.inference_transforms = T.Compose(
[T.ToTensor(), T.Normalize(mean=mean, std=std)]
)
def __setup_amp(self, enforce_mixed_precision: bool = False) -> None:
"""Setup automated mixed precision (amp) for inference.
Args:
enforce_mixed_precision (bool, optional): Using PyTorch autocasting with dtype float16 to speed up inference. Also good for trained amp networks.
Can be used to enforce amp inference even for networks trained without amp. Otherwise, the network setting is used.
Defaults to False.
"""
if enforce_mixed_precision:
self.mixed_precision = enforce_mixed_precision
else:
self.mixed_precision = self.run_conf["training"].get(
"mixed_precision", False
)
def process_wsi(
self,
wsi: WSI,
subdir_name: str = None,
patch_size: int = 1024,
overlap: int = 64,
batch_size: int = 8,
geojson: bool = False,
) -> None:
"""Process WSI file
Args:
wsi (WSI): WSI object
subdir_name (str, optional): If provided, a subdir with the given name is created in the cell_detection folder.
Helpful if you need to store different cell detection results next to each other. Defaults to None (no subdir).
patch_size (int, optional): Patch-Size. Default to 1024.
overlap (int, optional): Overlap between patches. Defaults to 64.
batch_size (int, optional): Batch-size for inference. Defaults to 8.
geosjon (bool, optional): If a geojson export should be performed. Defaults to False.
"""
self.logger.info(f"Processing WSI: {wsi.name}")
wsi_inference_dataset = PatchedWSIInference(
wsi, transform=self.inference_transforms
)
num_workers = int(3 / 4 * os.cpu_count())
if num_workers is None:
num_workers = 16
num_workers = int(np.clip(num_workers, 1, 2 * batch_size))
wsi_inference_dataloader = DataLoader(
dataset=wsi_inference_dataset,
batch_size=batch_size,
num_workers=num_workers,
shuffle=False,
collate_fn=wsi_inference_dataset.collate_batch,
pin_memory=False,
)
dataset_config = self.run_conf["dataset_config"]
nuclei_types = dataset_config["nuclei_types"]
if subdir_name is not None:
outdir = Path(wsi.patched_slide_path) / "cell_detection" / subdir_name
else:
outdir = Path(wsi.patched_slide_path) / "cell_detection"
outdir.mkdir(exist_ok=True, parents=True)
cell_dict_wsi = [] # for storing all cell information
cell_dict_detection = [] # for storing only the centroids
graph_data = {
"cell_tokens": [],
"positions": [],
"contours": [],
"metadata": {"wsi_metadata": wsi.metadata, "nuclei_types": nuclei_types},
}
processed_patches = []
memory_usage = 0
cell_count = 0
with torch.no_grad():
pbar = tqdm.tqdm(wsi_inference_dataloader, total=len(wsi_inference_dataset))
for batch in wsi_inference_dataloader:
patches = batch[0].to(self.device)
metadata = batch[1]
if self.mixed_precision:
with torch.autocast(device_type="cuda", dtype=torch.float16):
predictions = self.model.forward(patches, retrieve_tokens=True)
else:
predictions = self.model.forward(patches, retrieve_tokens=True)
# reshape, apply softmax to segmentation maps
# predictions = self.model.reshape_model_output(predictions_, self.device)
instance_types, tokens = self.get_cell_predictions_with_tokens(
predictions, magnification=wsi.metadata["magnification"]
)
# unpack each patch from batch
for idx, (patch_instance_types, patch_metadata) in enumerate(
zip(instance_types, metadata)
):
pbar.update(1)
# add global patch metadata
patch_cell_detection = {}
patch_cell_detection["patch_metadata"] = patch_metadata
patch_cell_detection["type_map"] = dataset_config["nuclei_types"]
processed_patches.append(
f"{patch_metadata['row']}_{patch_metadata['col']}"
)
# calculate coordinate on highest magnifications
# wsi_scaling_factor = patch_metadata["wsi_metadata"]["downsampling"]
# patch_size = patch_metadata["wsi_metadata"]["patch_size"]
wsi_scaling_factor = wsi.metadata["downsampling"]
patch_size = wsi.metadata["patch_size"]
x_global = int(
patch_metadata["row"] * patch_size * wsi_scaling_factor
- (patch_metadata["row"] + 0.5) * overlap
)
y_global = int(
patch_metadata["col"] * patch_size * wsi_scaling_factor
- (patch_metadata["col"] + 0.5) * overlap
)
# extract cell information
for cell in patch_instance_types.values():
if cell["type"] == nuclei_types["Background"]:
continue
offset_global = np.array([x_global, y_global])
centroid_global = cell["centroid"] + np.flip(offset_global)
contour_global = cell["contour"] + np.flip(offset_global)
bbox_global = cell["bbox"] + offset_global
cell_dict = {
"bbox": bbox_global.tolist(),
"centroid": centroid_global.tolist(),
"contour": contour_global.tolist(),
"type_prob": cell["type_prob"],
"type": cell["type"],
"patch_coordinates": [
patch_metadata["row"],
patch_metadata["col"],
],
"cell_status": get_cell_position_marging(
cell["bbox"], 1024, 64
),
"offset_global": offset_global.tolist()
}
cell_detection = {
"bbox": bbox_global.tolist(),
"centroid": centroid_global.tolist(),
"type": cell["type"],
}
if np.max(cell["bbox"]) == 1024 or np.min(cell["bbox"]) == 0:
position = get_cell_position(cell["bbox"], 1024)
cell_dict["edge_position"] = True
cell_dict["edge_information"] = {}
cell_dict["edge_information"]["position"] = position
cell_dict["edge_information"][
"edge_patches"
] = get_edge_patch(
position, patch_metadata["row"], patch_metadata["col"]
)
else:
cell_dict["edge_position"] = False
cell_dict_wsi.append(cell_dict)
cell_dict_detection.append(cell_detection)
# get the cell token
bb_index = cell["bbox"] / self.model.patch_size
bb_index[0, :] = np.floor(bb_index[0, :])
bb_index[1, :] = np.ceil(bb_index[1, :])
bb_index = bb_index.astype(np.uint8)
cell_token = tokens[
idx,
:,
bb_index[0, 0] : bb_index[1, 0],
bb_index[0, 1] : bb_index[1, 1]
]
cell_token = torch.mean(
rearrange(cell_token, "D H W -> (H W) D"), dim=0
)
graph_data["cell_tokens"].append(cell_token)
graph_data["positions"].append(torch.Tensor(centroid_global))
graph_data["contours"].append(torch.Tensor(contour_global))
cell_count = cell_count + 1
# dict sizes
memory_usage = memory_usage + get_size_of_dict(cell_dict)/(1024*1024) + get_size_of_dict(cell_detection)/(1024*1024) # + sys.getsizeof(cell_token)/(1024*1024)
# pytorch
memory_usage = memory_usage + (cell_token.nelement() * cell_token.element_size())/(1024*1024) + centroid_global.nbytes/(1024*1024) + contour_global.nbytes/(1024*1024)
pbar.set_postfix(Cells=cell_count, Memory=f"{memory_usage:.2f} MB")
# post processing
self.logger.info(f"Detected cells before cleaning: {len(cell_dict_wsi)}")
keep_idx = self.post_process_edge_cells(cell_list=cell_dict_wsi)
cell_dict_wsi = [cell_dict_wsi[idx_c] for idx_c in keep_idx]
cell_dict_detection = [cell_dict_detection[idx_c] for idx_c in keep_idx]
graph_data["cell_tokens"] = [
graph_data["cell_tokens"][idx_c] for idx_c in keep_idx
]
graph_data["positions"] = [graph_data["positions"][idx_c] for idx_c in keep_idx]
graph_data["contours"] = [graph_data["contours"][idx_c] for idx_c in keep_idx]
self.logger.info(f"Detected cells after cleaning: {len(keep_idx)}")
self.logger.info(
f"Processed all patches. Storing final results: {str(outdir / f'cells.json')} and cell_detection.json"
)
cell_dict_wsi = {
"wsi_metadata": wsi.metadata,
"processed_patches": processed_patches,
"type_map": dataset_config["nuclei_types"],
"cells": cell_dict_wsi,
}
with open(str(outdir / "cells.json"), "w") as outfile:
ujson.dump(cell_dict_wsi, outfile, indent=2)
if geojson:
self.logger.info("Converting segmentation to geojson")
geojson_list = self.convert_geojson(cell_dict_wsi["cells"], True)
with open(str(str(outdir / "cells.geojson")), "w") as outfile:
ujson.dump(geojson_list, outfile, indent=2)
cell_dict_detection = {
"wsi_metadata": wsi.metadata,
"processed_patches": processed_patches,
"type_map": dataset_config["nuclei_types"],
"cells": cell_dict_detection,
}
with open(str(outdir / "cell_detection.json"), "w") as outfile:
ujson.dump(cell_dict_detection, outfile, indent=2)
if geojson:
self.logger.info("Converting detection to geojson")
geojson_list = self.convert_geojson(cell_dict_wsi["cells"], False)
with open(str(str(outdir / "cell_detection.geojson")), "w") as outfile:
ujson.dump(geojson_list, outfile, indent=2)
self.logger.info(
f"Create cell graph with embeddings and save it under: {str(outdir / 'cells.pt')}"
)
graph = CellGraphDataWSI(
x=torch.stack(graph_data["cell_tokens"]),
positions=torch.stack(graph_data["positions"]),
contours=graph_data["contours"],
metadata=graph_data["metadata"],
)
torch.save(graph, outdir / "cells.pt")
cell_stats_df = pd.DataFrame(cell_dict_wsi["cells"])
cell_stats = dict(cell_stats_df.value_counts("type"))
nuclei_types_inverse = {v: k for k, v in nuclei_types.items()}
verbose_stats = {nuclei_types_inverse[k]: v for k, v in cell_stats.items()}
self.logger.info(f"Finished with cell detection for WSI {wsi.name}")
self.logger.info("Stats:")
self.logger.info(f"{verbose_stats}")
def get_cell_predictions_with_tokens(
self, predictions: dict, magnification: int = 40
) -> Tuple[List[dict], torch.Tensor]:
"""Take the raw predictions, apply softmax and calculate type instances
Args:
predictions (dict): Network predictions with tokens. Keys:
magnification (int, optional): WSI magnification. Defaults to 40.
Returns:
Tuple[List[dict], torch.Tensor]:
* List[dict]: List with a dictionary for each batch element with cell seg results
Contains bbox, contour, 2D-position, type and type_prob for each cell
* List[dict]: Network tokens on cpu device with shape (batch_size, num_tokens_h, num_tokens_w, embd_dim)
"""
predictions["nuclei_binary_map"] = F.softmax(
predictions["nuclei_binary_map"], dim=1
) # shape: (batch_size, 2, H, W)
predictions["nuclei_type_map"] = F.softmax(
predictions["nuclei_type_map"], dim=1
) # shape: (batch_size, num_nuclei_classes, H, W)
# get the instance types
(
_,
instance_types,
) = self.model.calculate_instance_map(predictions, magnification=magnification)
tokens = predictions["tokens"].to("cpu")
return instance_types, tokens
def post_process_edge_cells(self, cell_list: List[dict]) -> List[int]:
"""Use the CellPostProcessor to remove multiple cells and merge due to overlap
Args:
cell_list (List[dict]): List with cell-dictionaries. Required keys:
* bbox
* centroid
* contour
* type_prob
* type
* patch_coordinates
* cell_status
* offset_global
Returns:
List[int]: List with integers of cells that should be kept
"""
cell_processor = CellPostProcessor(cell_list, self.logger)
cleaned_cells = cell_processor.post_process_cells()
return list(cleaned_cells.index.values)
def convert_geojson(
self, cell_list: list[dict], polygons: bool = False
) -> List[dict]:
"""Convert a list of cells to a geojson object
Either a segmentation object (polygon) or detection points are converted
Args:
cell_list (list[dict]): Cell list with dict entry for each cell.
Required keys for detection:
* type
* centroid
Required keys for segmentation:
* type
* contour
polygons (bool, optional): If polygon segmentations (True) or detection points (False). Defaults to False.
Returns:
List[dict]: Geojson like list
"""
if polygons:
cell_segmentation_df = pd.DataFrame(cell_list)
detected_types = sorted(cell_segmentation_df.type.unique())
geojson_placeholder = []
for cell_type in detected_types:
cells = cell_segmentation_df[cell_segmentation_df["type"] == cell_type]
contours = cells["contour"].to_list()
final_c = []
for c in contours:
c.append(c[0])
final_c.append([c])
cell_geojson_object = get_template_segmentation()
cell_geojson_object["id"] = str(uuid.uuid4())
cell_geojson_object["geometry"]["coordinates"] = final_c
cell_geojson_object["properties"]["classification"][
"name"
] = TYPE_NUCLEI_DICT[cell_type]
cell_geojson_object["properties"]["classification"][
"color"
] = COLOR_DICT[cell_type]
geojson_placeholder.append(cell_geojson_object)
else:
cell_detection_df = pd.DataFrame(cell_list)
detected_types = sorted(cell_detection_df.type.unique())
geojson_placeholder = []
for cell_type in detected_types:
cells = cell_detection_df[cell_detection_df["type"] == cell_type]
centroids = cells["centroid"].to_list()
cell_geojson_object = get_template_point()
cell_geojson_object["id"] = str(uuid.uuid4())
cell_geojson_object["geometry"]["coordinates"] = centroids
cell_geojson_object["properties"]["classification"][
"name"
] = TYPE_NUCLEI_DICT[cell_type]
cell_geojson_object["properties"]["classification"][
"color"
] = COLOR_DICT[cell_type]
geojson_placeholder.append(cell_geojson_object)
return geojson_placeholder
class CellPostProcessor:
def __init__(self, cell_list: List[dict], logger: logging.Logger) -> None:
"""POst-Processing a list of cells from one WSI
Args:
cell_list (List[dict]): List with cell-dictionaries. Required keys:
* bbox
* centroid
* contour
* type_prob
* type
* patch_coordinates
* cell_status
* offset_global
logger (logging.Logger): Logger
"""
self.logger = logger
self.logger.info("Initializing Cell-Postprocessor")
self.cell_df = pd.DataFrame(cell_list)
self.cell_df = self.cell_df.parallel_apply(convert_coordinates, axis=1)
self.mid_cells = self.cell_df[
self.cell_df["cell_status"] == 0
] # cells in the mid
self.cell_df_margin = self.cell_df[
self.cell_df["cell_status"] != 0
] # cells either torching the border or margin
def post_process_cells(self) -> pd.DataFrame:
"""Main Post-Processing coordinator, entry point
Returns:
pd.DataFrame: DataFrame with post-processed and cleaned cells
"""
self.logger.info("Finding edge-cells for merging")
cleaned_edge_cells = self._clean_edge_cells()
self.logger.info("Removal of cells detected multiple times")
cleaned_edge_cells = self._remove_overlap(cleaned_edge_cells)
# merge with mid cells
postprocessed_cells = pd.concat(
[self.mid_cells, cleaned_edge_cells]
).sort_index()
return postprocessed_cells
def _clean_edge_cells(self) -> pd.DataFrame:
"""Create a DataFrame that just contains all margin cells (cells inside the margin, not touching the border)
and border/edge cells (touching border) with no overlapping equivalent (e.g, if patch has no neighbour)
Returns:
pd.DataFrame: Cleaned DataFrame
"""
margin_cells = self.cell_df_margin[
self.cell_df_margin["edge_position"] == 0
] # cells at the margin, but not touching the border
edge_cells = self.cell_df_margin[
self.cell_df_margin["edge_position"] == 1
] # cells touching the border
existing_patches = list(set(self.cell_df_margin["patch_coordinates"].to_list()))
edge_cells_unique = pd.DataFrame(
columns=self.cell_df_margin.columns
) # cells torching the border without having an overlap from other patches
for idx, cell_info in edge_cells.iterrows():
edge_information = dict(cell_info["edge_information"])
edge_patch = edge_information["edge_patches"][0]
edge_patch = f"{edge_patch[0]}_{edge_patch[1]}"
if edge_patch not in existing_patches:
edge_cells_unique.loc[idx, :] = cell_info
cleaned_edge_cells = pd.concat([margin_cells, edge_cells_unique])
return cleaned_edge_cells.sort_index()
def _remove_overlap(self, cleaned_edge_cells: pd.DataFrame) -> pd.DataFrame:
"""Remove overlapping cells from provided DataFrame
Args:
cleaned_edge_cells (pd.DataFrame): DataFrame that should be cleaned
Returns:
pd.DataFrame: Cleaned DataFrame
"""
merged_cells = cleaned_edge_cells
for iteration in range(20):
poly_list = []
for idx, cell_info in merged_cells.iterrows():
poly = Polygon(cell_info["contour"])
if not poly.is_valid:
self.logger.debug("Found invalid polygon - Fixing with buffer 0")
multi = poly.buffer(0)
if isinstance(multi, MultiPolygon):
if len(multi) > 1:
poly_idx = np.argmax([p.area for p in multi])
poly = multi[poly_idx]
poly = Polygon(poly)
else:
poly = multi[0]
poly = Polygon(poly)
else:
poly = Polygon(multi)
poly.uid = idx
poly_list.append(poly)
# use an strtree for fast querying
tree = strtree.STRtree(poly_list)
merged_idx = deque()
iterated_cells = set()
overlaps = 0
for query_poly in poly_list:
if query_poly.uid not in iterated_cells:
intersected_polygons = tree.query(
query_poly
) # this also contains a self-intersection
if (
len(intersected_polygons) > 1
): # we have more at least one intersection with another cell
submergers = [] # all cells that overlap with query
for inter_poly in intersected_polygons:
if (
inter_poly.uid != query_poly.uid
and inter_poly.uid not in iterated_cells
):
if (
query_poly.intersection(inter_poly).area
/ query_poly.area
> 0.01
or query_poly.intersection(inter_poly).area
/ inter_poly.area
> 0.01
):
overlaps = overlaps + 1
submergers.append(inter_poly)
iterated_cells.add(inter_poly.uid)
# catch block: empty list -> some cells are touching, but not overlapping strongly enough
if len(submergers) == 0:
merged_idx.append(query_poly.uid)
else: # merging strategy: take the biggest cell, other merging strategies needs to get implemented
selected_poly_index = np.argmax(
np.array([p.area for p in submergers])
)
selected_poly_uid = submergers[selected_poly_index].uid
merged_idx.append(selected_poly_uid)
else:
# no intersection, just add
merged_idx.append(query_poly.uid)
iterated_cells.add(query_poly.uid)
self.logger.info(
f"Iteration {iteration}: Found overlap of # cells: {overlaps}"
)
if overlaps == 0:
self.logger.info("Found all overlapping cells")
break
elif iteration == 20:
self.logger.info(
f"Not all doubled cells removed, still {overlaps} to remove. For perfomance issues, we stop iterations now. Please raise an issue in git or increase number of iterations."
)
merged_cells = cleaned_edge_cells.loc[
cleaned_edge_cells.index.isin(merged_idx)
].sort_index()
return merged_cells.sort_index()
def convert_coordinates(row: pd.Series) -> pd.Series:
"""Convert a row from x,y type to one string representation of the patch position for fast querying
Repr: x_y
Args:
row (pd.Series): Row to be processed
Returns:
pd.Series: Processed Row
"""
x, y = row["patch_coordinates"]
row["patch_row"] = x
row["patch_col"] = y
row["patch_coordinates"] = f"{x}_{y}"
return row
def get_cell_position(bbox: np.ndarray, patch_size: int = 1024) -> List[int]:
"""Get cell position as a list
Entry is 1, if cell touches the border: [top, right, down, left]
Args:
bbox (np.ndarray): Bounding-Box of cell
patch_size (int, optional): Patch-size. Defaults to 1024.
Returns:
List[int]: List with 4 integers for each position
"""
# bbox = 2x2 array in h, w style
# bbox[0,0] = upper position (height)
# bbox[1,0] = lower dimension (height)
# boox[0,1] = left position (width)
# bbox[1,1] = right position (width)
# bbox[:,0] -> x dimensions
top, left, down, right = False, False, False, False
if bbox[0, 0] == 0:
top = True
if bbox[0, 1] == 0:
left = True
if bbox[1, 0] == patch_size:
down = True
if bbox[1, 1] == patch_size:
right = True
position = [top, right, down, left]
position = [int(pos) for pos in position]
return position
def get_cell_position_marging(
bbox: np.ndarray, patch_size: int = 1024, margin: int = 64
) -> int:
"""Get the status of the cell, describing the cell position
A cell is either in the mid (0) or at one of the borders (1-8)
# Numbers are assigned clockwise, starting from top left
# i.e., top left = 1, top = 2, top right = 3, right = 4, bottom right = 5 bottom = 6, bottom left = 7, left = 8
# Mid status is denoted by 0
Args:
bbox (np.ndarray): Bounding Box of cell
patch_size (int, optional): Patch-Size. Defaults to 1024.
margin (int, optional): Margin-Size. Defaults to 64.
Returns:
int: Cell Status
"""
cell_status = None
if np.max(bbox) > patch_size - margin or np.min(bbox) < margin:
if bbox[0, 0] < margin:
# top left, top or top right
if bbox[0, 1] < margin:
# top left
cell_status = 1
elif bbox[1, 1] > patch_size - margin:
# top right
cell_status = 3
else:
# top
cell_status = 2
elif bbox[1, 1] > patch_size - margin:
# top right, right or bottom right
if bbox[1, 0] > patch_size - margin:
# bottom right
cell_status = 5
else:
# right
cell_status = 4
elif bbox[1, 0] > patch_size - margin:
# bottom right, bottom, bottom left
if bbox[0, 1] < margin:
# bottom left
cell_status = 7
else:
# bottom
cell_status = 6
elif bbox[0, 1] < margin:
# bottom left, left, top left, but only left is left
cell_status = 8
else:
cell_status = 0
return cell_status
def get_edge_patch(position, row, col):
# row starting on bottom or on top?
if position == [1, 0, 0, 0]:
# top
return [[row - 1, col]]
if position == [1, 1, 0, 0]:
# top and right
return [[row - 1, col], [row - 1, col + 1], [row, col + 1]]
if position == [0, 1, 0, 0]:
# right
return [[row, col + 1]]
if position == [0, 1, 1, 0]:
# right and down
return [[row, col + 1], [row + 1, col + 1], [row + 1, col]]
if position == [0, 0, 1, 0]:
# down
return [[row + 1, col]]
if position == [0, 0, 1, 1]:
# down and left
return [[row + 1, col], [row + 1, col - 1], [row, col - 1]]
if position == [0, 0, 0, 1]:
# left
return [[row, col - 1]]
if position == [1, 0, 0, 1]:
# left and top
return [[row, col - 1], [row - 1, col - 1], [row - 1, col]]
# CLI
class InferenceWSIParser:
"""Parser"""
def __init__(self) -> None:
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description="Perform CellViT inference for given run-directory with model checkpoints and logs. Just for CellViT, not for StarDist models",
)
requiredNamed = parser.add_argument_group("required named arguments")
requiredNamed.add_argument(
"--model",
type=str,
help="Model checkpoint file that is used for inference",
required=True,
)
parser.add_argument(
"--gpu", type=int, help="Cuda-GPU ID for inference. Default: 0", default=0
)
parser.add_argument(
"--magnification",
type=float,
help="Network magnification. Is used for checking patch magnification such that we use the correct resolution for network. Default: 40",
default=40,
)
parser.add_argument(
"--enforce_amp",
action="store_true",
help="Whether to use mixed precision for inference (enforced). Otherwise network default training settings are used."
" Default: False",
)
parser.add_argument(
"--batch_size",
type=int,
help="Inference batch-size. Default: 8",
default=8,
)
parser.add_argument(
"--outdir_subdir",
type=str,
help="If provided, a subdir with the given name is created in the cell_detection folder where the results are stored. Default: None",
default=None,
)
parser.add_argument(
"--geojson",
action="store_true",
help="Set this flag to export results as additional geojson files for loading them into Software like QuPath.",
)
# subparsers for either loading a WSI or a WSI folder
# WSI
subparsers = parser.add_subparsers(
dest="command",
description="Main run command for either performing inference on single WSI-file or on whole dataset",
)
subparser_wsi = subparsers.add_parser(
"process_wsi", description="Process a single WSI file"
)
subparser_wsi.add_argument(
"--wsi_path",
type=str,
help="Path to WSI file",
)
subparser_wsi.add_argument(
"--patched_slide_path",
type=str,
help="Path to patched WSI file (specific WSI file, not parent path of patched slide dataset)",
)
# Dataset
subparser_dataset = subparsers.add_parser(
"process_dataset",
description="Process a whole dataset",
)
subparser_dataset.add_argument(
"--wsi_paths", type=str, help="Path to the folder where all WSI are stored"
)
subparser_dataset.add_argument(
"--patch_dataset_path",
type=str,
help="Path to the folder where the patch dataset is stored",
)
subparser_dataset.add_argument(
"--filelist",
type=str,
help="Filelist with WSI to process. Must be a .csv file with one row denoting the filenames (named 'Filename')."
"If not provided, all WSI files with given ending in the filelist are processed.",
default=None,
)
subparser_dataset.add_argument(
"--wsi_extension",
type=str,
help="The extension types used for the WSI files, see configs.python.config (WSI_EXT)",
default="svs",
)