-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsubmit-multinode.sh
64 lines (54 loc) · 2.03 KB
/
submit-multinode.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#!/bin/bash
#SBATCH --job-name=multinode
#SBATCH -D /home/nct01/nct01328/transformers-in-supercomputers
#SBATCH --output=/home/nct01/nct01328/transformers-in-supercomputers/reports/R-%x.%j.out
#SBATCH --error=/home/nct01/nct01328/transformers-in-supercomputers/reports/R-%x.%j.err
#SBATCH --nodes=4 # number of Nodes
#SBATCH --ntasks-per-node=1 # number of MP tasks
#SBATCH --gres=gpu:4 # number of GPUs per node
#SBATCH --cpus-per-task=160 # number of cores per tasks
#SBATCH --time=01:59:00 # maximum execution time (HH:MM:SS)
#SBATCH --exclusive
#SBATCH --qos=debug
cat /home/nct01/nct01328/transformers-in-supercomputers/submit-multinode.sh
######################
### Set enviroment ###
######################
module purge
module load anaconda3/2020.02 cuda/10.2 cudnn/8.0.5 nccl/2.9.9 arrow/7.0.0 openmpi
source activate /home/nct01/nct01328/pytorch_antoni_local
export HF_HOME=/gpfs/projects/nct01/nct01328/
export HF_LOCAL_HOME=/gpfs/projects/nct01/nct01328/HF_LOCAL
export HF_DATASETS_OFFLINE=1
export TRANSFORMERS_OFFLINE=1
export PYTHONPATH=/home/nct01/nct01328/transformers-in-supercomputers:$PYTHONPATH
export GPUS_PER_NODE=4
######################
######################
#### Set network #####
######################
head_node_ip=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
echo "NODES: $SLURM_NNODES"
######################
export LAUNCHER=" \
torchrun --nnodes $SLURM_NNODES \
--nproc_per_node $GPUS_PER_NODE \
--rdzv_id $RANDOM \
--rdzv_backend c10d \
--rdzv_endpoint $head_node_ip:29500 \
"
export PYTHON_FILE="/home/nct01/nct01328/transformers-in-supercomputers/training_metric.py"
batchsizeList=64,128,256
for bs in ${batchsizeList//,/ }
do
export PYTHON_ARGS=" \
--mixed_precision fp16 \
--batch_size $bs \
--eval_batch_size 512 \
--num_epochs 5 \
--model_name distilbert-base-uncased \
--learning_rate 5e-4 \
--dataset emotion \
"
srun $LAUNCHER $PYTHON_FILE $PYTHON_ARGS
done