-
Notifications
You must be signed in to change notification settings - Fork 1
/
kmeans_initializer.cpp
42 lines (34 loc) · 1.34 KB
/
kmeans_initializer.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/*
* This Source Code Form is subject to the terms of the Mozilla Public License,
* v. 2.0. If a copy of the MPL was not distributed with this file, You can
* obtain one at http://mozilla.org/MPL/2.0/.
*
*
* Copyright (c) 2016, Lutz, Clemens <lutzcle@cml.li>
*/
#include "kmeans_initializer.hpp"
#include <random>
template <typename PointT>
void Clustering::KmeansInitializer<PointT>::forgy(
cle::Matrix<PointT, std::allocator<PointT>, size_t, true> const& points,
cle::Matrix<PointT, std::allocator<PointT>, size_t, true>& centroids) {
std::random_device rand;
for (size_t c = 0; c != centroids.rows(); ++c) {
size_t random_point = rand() % points.rows();
for (size_t d = 0; d < centroids.cols(); ++d) {
centroids(c, d) = points(random_point, d);
}
}
}
template <typename PointT>
void Clustering::KmeansInitializer<PointT>::first_x(
cle::Matrix<PointT, std::allocator<PointT>, size_t, true> const& points,
cle::Matrix<PointT, std::allocator<PointT>, size_t, true>& centroids) {
for (size_t d = 0; d < centroids.cols(); ++d) {
for (size_t c = 0; c != centroids.rows(); ++c) {
centroids(c, d) = points(c % points.rows(), d);
}
}
}
template class Clustering::KmeansInitializer<float>;
template class Clustering::KmeansInitializer<double>;