forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
58 lines (49 loc) · 2.04 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Copyright 2019 Deepmind Technologies Limited.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Submission to Unrestricted Adversarial Challenge."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow.compat.v1 as tf
import tensorflow_hub as hub
from unrestricted_advex import eval_kit
def _preprocess_image(image):
image = tf.image.central_crop(image, central_fraction=0.875)
image = tf.image.resize_bilinear(image, [224, 224], align_corners=False)
return image
def test_preprocess(image):
image = _preprocess_image(image)
image = tf.subtract(image, 0.5)
image = tf.multiply(image, 2.0)
return image
def main():
g = tf.Graph()
with g.as_default():
input_tensor = tf.placeholder(tf.float32, (None, 224, 224, 3))
x_np = test_preprocess(input_tensor)
raw_module_1 = hub.Module(
"https://tfhub.dev/deepmind/llr-pretrain-adv/latents/1")
raw_module_2 = hub.Module(
"https://tfhub.dev/deepmind/llr-pretrain-adv/linear/1")
latents = raw_module_1(dict(inputs=x_np, decay_rate=0.1))
logits = raw_module_2(dict(inputs=latents))
logits = tf.squeeze(logits, axis=[1, 2])
two_class_logits = tf.concat([tf.nn.relu(-logits[:, 1:]),
tf.nn.relu(logits[:, 1:])], axis=1)
sess = tf.train.SingularMonitoredSession()
def model(x_np):
return sess.run(two_class_logits, feed_dict={input_tensor: x_np})
eval_kit.evaluate_bird_or_bicycle_model(model, model_name="llr_resnet")
if __name__ == "__main__":
main()