-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathUrduFeel.py
44 lines (34 loc) · 1.53 KB
/
UrduFeel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
import pandas
import numpy
pandas.options.mode.chained_assignment = None
pandas.set_option('display.max_colwidth', None)
import sklearn
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
# !pip install keras
# !pip install tensorflow
from keras.models import Sequential
from keras.layers import Embedding, LSTM, GRU, SimpleRNN, Bidirectional, Dense, Dropout
from keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
import pickle
# Load the model data from the pickle file
with open('urduSentiModel', 'rb') as file:
modelData = pickle.load(file)
# Extract the components from the loaded model data
tokens = modelData['tokenizer']
maxLength = modelData['maxLength']
model = modelData['model']
def makePrediction(sentence):
# Preprocess the input sentence
sentenceSequence = tokens.texts_to_sequences([sentence])
sentencePad = pad_sequences(sentenceSequence, maxlen = maxLength)
# Make sentiment prediction using the loaded model
prediction = model.predict(sentencePad)
predictedClass = round(prediction[0][0])
# Convert the prediction to 'P' (Positive) or 'N' (Negative)
sentiment = 'P' if predictedClass == 1 else 'N'
return sentiment
# Write your sentence here
sentence = 'چندے سے انقلاب اور عمران خان وزیر اعظم نہیں بن سکتے'
print(f"Predicted Sentiment: {makePrediction(sentence)}")