Skip to content

Tanzmarie/DirichletRegBoost

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Boosting Dirichlet regression models

Component-wise gradient boosting algorithm for modeling Dirichlet regression models within the framework of generalized additive models for location, scale and shape, which enables the simultaneous modeling of all distribution parameters of the Dirichlet distribution of a multivariate response conditional on explanatory variables.

Example

require("gamboostLSS")
require("DirichletReg")

source("families/Dirichlet.R")

set.seed(1)

n = 100
p = 10

x = matrix(runif(p * n, 0,1), n)

x = data.frame(x)

a1 = exp(2.5*x[,1] - x[,2] + 3*x[,3]) 
a2 = exp(2*x[,4] + 2*x[,5] - x[,6])
a3 = exp(1.5*x[,7] -  1.5*x[,8] + x[,9])
A = cbind(a1,a2,a3)

y = rdirichlet(nrow(A),A)

colnames(y) = c("y1","y2","y3")


# --- model

mod = glmboostLSS(y ~ ., data = x, families = Dirichlet(K=3), control = boost_control(trace = TRUE, mstop = 1000, nu = 0.1), method = 'noncyclic')

coef(mod[200], off2int = TRUE)

par(mfrow = c(1,3))
plot(mod)

About

Boosting Dirichlet regression models

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages