Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Issue 352-EV7-suggestion #353

Draft
wants to merge 7 commits into
base: main
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
161 changes: 98 additions & 63 deletions source/linear-algebra/source/02-EV/07.ptx
Original file line number Diff line number Diff line change
Expand Up @@ -128,14 +128,74 @@ Rewrite this solution space in the form <me>\setBuilder{ a \left[\begin{array}{c
</task>
<task>
<p>
Rewrite this solution space in the form <me>\vspan\left\{\left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown\end{array}\right], \left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown \end{array}\right]\right\}.</me>
Which of these choices best describes the set of two vectors
<m>\left\{\left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown\end{array}\right], \left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown \end{array}\right]\right\}</m>
used in this solution space?
<ol marker="A.">
<li>
<p>
The set is linearly dependent.
</p>
</li>
<li>
<p>
The set is linearly independent.
</p>
</li>
<li>
<p>
The set spans the solution space.
</p>
</li>
<li>
<p>
The set is a basis of the solution space.
</p>
</li>
</ol>
</p>
</task>
</activity>
<answer>
<p>
D.
</p>
</answer>

<sage language="octave">
</sage>
<activity estimated-time='10'>
<introduction>
<p>
Consider the homogeneous system of equations
<md alignat-columns='5' alignment="alignat">
<mrow>
2x_1&amp;\,+\,&amp;4x_2&amp;\,+\,&amp;2x_3 &amp;\,-\,&amp;3 x_4 &amp;\,+\,&amp;31x_5&amp;\,+\,&amp;2x_6&amp;\,-\,&amp;16x_7&amp;=&amp; 0
</mrow>
<mrow>
-1x_1&amp;\,-\,&amp;2x_2&amp;\,+\,&amp;4x_3 &amp;\,-\,&amp;x_4 &amp;\,+\,&amp;2x_5&amp;\,+\,&amp;9x_6&amp;\,+\,&amp;3x_7&amp;=&amp; 0
</mrow>
<mrow>
x_1&amp;\,+\,&amp;2x_2&amp;\,+\,&amp;x_3 &amp;\,+\,&amp; x_4 &amp;\,+\,&amp;3x_5&amp;\,+\,&amp;6x_7&amp;\,+\,&amp;7x_7&amp;=&amp; 0
</mrow>
</md>
</p>
</introduction>
<task>
<p>
Find its solution set (a subspace of <m>\IR^7</m>).
</p>
</task>
<task>
<p>
Rewrite this solution space in the form <me>\setBuilder{ a \left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown\\ \unknown\\ \unknown \\ \unknown\end{array}\right] + b \left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown\\ \unknown\\ \unknown \\ \unknown\end{array}\right]+c \left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown\\ \unknown\\ \unknown \\ \unknown\end{array}\right]+d \left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown\\ \unknown\\ \unknown \\ \unknown\end{array}\right] }{a,b,c,d \in \IR}.</me>
</p>
</task>
<task>
<p>
Which of these choices best describes the set of two vectors
<m>\left\{\left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown\end{array}\right], \left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown \end{array}\right]\right\}</m>
used in this span?
<m>\left\{\left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown\\ \unknown\\ \unknown \\ \unknown\end{array}\right], \left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown\\ \unknown\\ \unknown \\ \unknown\end{array}\right],\left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown\\ \unknown\\ \unknown \\ \unknown\end{array}\right],\left[\begin{array}{c} \unknown \\ \unknown \\ \unknown \\ \unknown\\ \unknown\\ \unknown \\ \unknown\end{array}\right]\right\}</m>
used in this solution space?
<ol marker="A.">
<li>
<p>
Expand All @@ -149,22 +209,34 @@ used in this span?
</li>
<li>
<p>
The set spans all of <m>\IR^4</m>.
The set spans the solution space.
</p>
</li>
<li>
<li>
<p>
The set fails to span the solution space.
The set is a basis for the solution space.
</p>
</li>
</ol>
</p>
</task>
</activity>
<answer>
<p>
D.
</p>
</answer>

<sage language="octave">
<input>
row1=[]
row2=[]
row3=[]
rref([row1;row2;row3])
</input>
</sage>


<fact xml:id="fact-solution-space-basis">
<statement>
<p>
Expand All @@ -175,73 +247,31 @@ used in this span?
Thus if
<me>
\setBuilder{
a \left[\begin{array}{c} -2 \\ 1 \\ 0 \\ 0\end{array}\right] +
b \left[\begin{array}{c} -1 \\ 0 \\ -4 \\ 1 \end{array}\right]
a \left[\begin{array}{c} -2 \\ 1 \\ 0 \\ 0\\0\\0\\0\end{array}\right] +
b \left[\begin{array}{c} -7 \\ 0 \\ -1 \\ 5\\1\\0\\0 \end{array}\right]+
c \left[\begin{array}{c} -1 \\ 0 \\ -3 \\ -2\\0\\1\\0 \end{array}\right]+
d \left[\begin{array}{c} 1 \\ 0 \\ -2 \\ -6\\0\\0\\1 \end{array}\right]
}{
a,b \in \IR
} = \vspan\left\{ \left[\begin{array}{c} -2 \\ 1 \\ 0 \\ 0\end{array}\right],
\left[\begin{array}{c} -1 \\ 0 \\ -4 \\ 1 \end{array}\right] \right\}
a,b,c,d \in \IR
} = \vspan\left\{ \left[\begin{array}{c} -2 \\ 1 \\ 0 \\ 0\\0\\0\\0\end{array}\right],
\left[\begin{array}{c} -7 \\ 0 \\ -1 \\ 5\\1\\0\\0 \end{array}\right],
\left[\begin{array}{c} -1 \\ 0 \\ -3 \\ -2\\0\\1\\0 \end{array}\right],
\left[\begin{array}{c} 1 \\ 0 \\ -2 \\ -6\\0\\0\\1 \end{array}\right] \right\}
</me>
is the solution space for a homogeneous system, then
<me>
\setList{
\left[\begin{array}{c} -2 \\ 1 \\ 0 \\ 0\end{array}\right],
\left[\begin{array}{c} -1 \\ 0 \\ -4 \\ 1 \end{array}\right]
\left[\begin{array}{c} -2 \\ \textcolor{blue}{1} \\ 0 \\ 0\\\textcolor{blue}{0}\\\textcolor{blue}{0}\\\textcolor{blue}{0}\end{array}\right],
\left[\begin{array}{c} -7 \\ \textcolor{blue}{0} \\ -1 \\ 5\\\textcolor{blue}{1}\\\textcolor{blue}{0}\\\textcolor{blue}{0} \end{array}\right],
\left[\begin{array}{c} -1 \\ \textcolor{blue}{0} \\ -3 \\ -2\\\textcolor{blue}{0}\\\textcolor{blue}{1}\\\textcolor{blue}{0} \end{array}\right],
\left[\begin{array}{c} 1 \\ \textcolor{blue}{0} \\ -2 \\ -6\\\textcolor{blue}{0}\\\textcolor{blue}{0}\\\textcolor{blue}{1} \end{array}\right]
}
</me>
is a basis for the solution space.
</p>
</statement>
</fact>



<activity estimated-time='10'>
<statement>
<p>
Consider the homogeneous system of equations
<md alignat-columns='5' alignment="alignat">
<mrow>
2x_1&amp;\,+\,&amp;4x_2&amp;\,+\,&amp; 2x_3&amp;\,-\,&amp;4x_4 &amp;=&amp; 0
</mrow>
<mrow>
-2x_1&amp;\,-\,&amp;4x_2&amp;\,+\,&amp;x_3 &amp;\,+\,&amp; x_4 &amp;=&amp; 0
</mrow>
<mrow>
3x_1&amp;\,+\,&amp;6x_2&amp;\,-\,&amp;x_3 &amp;\,-\,&amp;4 x_4 &amp;=&amp; 0
</mrow>
</md>
</p>
<p>
Find a basis for its solution space.
</p>
</statement>
</activity>
<sage language="octave">
</sage>


<activity estimated-time='10'>
<statement>
<p>
Consider the homogeneous vector equation
<me>
x_1 \left[\begin{array}{c} 2 \\ -2 \\ 3 \end{array}\right]+
x_2 \left[\begin{array}{c} 4 \\ -4 \\ 6 \end{array}\right]+
x_3 \left[\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right]+
x_4 \left[\begin{array}{c} -4 \\ 1 \\ -4 \end{array}\right]=
\left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right]
</me>
</p>
<p>
Find a basis for its solution space.
</p>
</statement>
</activity>
<sage language="octave">
</sage>


<activity estimated-time='5'>
<introduction>
<p>
Expand Down Expand Up @@ -280,6 +310,11 @@ solution space?
</statement>
</task>
</activity>
<answer>
<p>
A.
</p>
</answer>
<sage language="octave">
</sage>

Expand All @@ -290,15 +325,15 @@ solution space?
To create a computer-animated film, an animator first models a scene
as a subset of <m>\mathbb R^3</m>. Then to transform this three-dimensional
visual data for display on a two-dimensional movie screen or television set,
the computer could apply a linear tranformation that maps visual information
the computer could apply a linear transformation that maps visual information
at the point <m>(x,y,z)\in\mathbb R^3</m> onto the pixel located at
<m>(x+y,y-z)\in\mathbb R^2</m>.
</p>
</introduction>
<task>
<statement>
<p>
What homoegeneous linear system describes the positions <m>(x,y,z)</m>
What homogeneous linear system describes the positions <m>(x,y,z)</m>
within the original scene that would be aligned with the
pixel <m>(0,0)</m> on the screen?
</p>
Expand Down
Loading