-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
0c81391
commit 96ccd2f
Showing
9 changed files
with
380 additions
and
91 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
import pandas as pd | ||
from sentence_transformers import SentenceTransformer, util | ||
import numpy as np | ||
import pickle | ||
import os | ||
|
||
|
||
corpus_list_data = os.path.join('embedding-data/','corpus_list_data.pickle') | ||
corpus_embeddings_data = os.path.join('embedding-data/','corpus_embeddings_data.pickle') | ||
|
||
class LoadData: | ||
def __init__(self): | ||
self.corpus_list = None | ||
def from_csv(self,file_path:str): | ||
self.file_path = file_path | ||
csv_data = pd.read_csv(file_path) | ||
column_name = str(input('Input the text Column Name Please ? : ')) | ||
self.corpus_list = csv_data[column_name].dropna().to_list() | ||
return self.corpus_list | ||
|
||
class TextEmbedder: | ||
def __init__(self): | ||
self.corpus_embeddings_data = corpus_embeddings_data | ||
self.corpus_list_data = corpus_list_data | ||
self.corpus_list = None | ||
self.embedder = SentenceTransformer('paraphrase-xlm-r-multilingual-v1') | ||
self.corpus_embeddings = None | ||
if 'embedding-data' not in os.listdir(): | ||
os.makedirs("embedding-data") | ||
def embed(self,corpus_list:list): | ||
self.corpus_list = corpus_list | ||
if len(os.listdir("embedding-data/"))==0: | ||
self.corpus_embeddings = self.embedder.encode(self.corpus_list, convert_to_tensor=True,show_progress_bar=True) | ||
pickle.dump(self.corpus_embeddings, open(self.corpus_embeddings_data, "wb")) | ||
pickle.dump(self.corpus_list, open(self.corpus_list_data, "wb")) | ||
print("Embedding data Saved Successfully!") | ||
print(os.listdir("embedding-data/")) | ||
else: | ||
print("Embedding data allready present, Do you want Embed & Save Again? Enter yes or no") | ||
flag = str(input()) | ||
if flag.lower() == 'yes': | ||
self.corpus_embeddings = self.embedder.encode(self.corpus_list, convert_to_tensor=True,show_progress_bar=True) | ||
#np.savez(self.corpus_embeddings_data,self.corpus_embeddings.cpu().data.numpy()) | ||
#np.savez(self.corpus_list_data,self.corpus_list) | ||
pickle.dump(self.corpus_embeddings, open(self.corpus_embeddings_data, "wb")) | ||
pickle.dump(self.corpus_list, open(self.corpus_list_data, "wb")) | ||
print("Embedding data Saved Successfully Again!") | ||
print(os.listdir("embedding-data/")) | ||
else: | ||
print("Embedding data allready Present, Please Apply Search!") | ||
print(os.listdir("embedding-data/")) | ||
def load_embedding(self): | ||
if len(os.listdir("embedding-data/"))==0: | ||
print("Embedding data Not present, Please Run Embedding First") | ||
else: | ||
print("Embedding data Loaded Successfully!") | ||
print(os.listdir("embedding-data/")) | ||
return pickle.load(open(self.corpus_embeddings_data, "rb")) | ||
|
||
class TextSearch: | ||
def __init__(self): | ||
self.corpus_embeddings = pickle.load(open(corpus_embeddings_data, "rb")) | ||
self.data = pickle.load(open(corpus_list_data, "rb")) | ||
def find_similar(self,query_text:str,top_n=10): | ||
self.top_n = top_n | ||
self.query_text = query_text | ||
self.query_embedding = TextEmbedder().embedder.encode(self.query_text, convert_to_tensor=True) | ||
self.cos_scores = util.pytorch_cos_sim(self.query_embedding, self.corpus_embeddings)[0].cpu().data.numpy() | ||
self.sort_list = np.argsort(-self.cos_scores) | ||
self.all_data = [] | ||
for idx in self.sort_list[1:self.top_n+1]: | ||
data_out = {} | ||
data_out['index'] = int(idx) | ||
data_out['text'] = self.data[idx] | ||
data_out['score'] = self.cos_scores[idx] | ||
self.all_data.append(data_out) | ||
return self.all_data |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from DeepTextSearch.DeepTextSearch import LoadData,TextEmbedder,TextSearch |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
pandas==1.2.4 | ||
sentence_transformers==1.2.0 | ||
numpy==1.18.5 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,134 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"id": "49594b04", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Importing the proper classes\n", | ||
"from DeepTextSearch import LoadData,TextEmbedder,TextSearch" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "a5424e23", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Input the text Column Name Please ? : Question\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# Load data from CSV file\n", | ||
"data = LoadData().from_csv(\"../your_file_name.csv\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"id": "5ce9f30d", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"application/vnd.jupyter.widget-view+json": { | ||
"model_id": "26865bd100c948a6945f2e47ad3a9183", | ||
"version_major": 2, | ||
"version_minor": 0 | ||
}, | ||
"text/plain": [ | ||
"Batches: 0%| | 0/19 [00:00<?, ?it/s]" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
}, | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Embedding data Saved Successfully!\n", | ||
"['corpus_embeddings_data.pickle', 'corpus_list_data.pickle']\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"# For Serching we need to Embed Data first, After Embedding all the data stored on the local path\n", | ||
"TextEmbedder().embed(corpus_list=data)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"id": "5f349322", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"[{'index': 575, 'text': 'What is Node.js?', 'score': 0.88481015},\n", | ||
" {'index': 578, 'text': 'When should we use Node.js?', 'score': 0.8388137},\n", | ||
" {'index': 581, 'text': 'Explain how does Node.js work?', 'score': 0.8064759},\n", | ||
" {'index': 591, 'text': 'What are Globals in Node.js?', 'score': 0.7844132},\n", | ||
" {'index': 602,\n", | ||
" 'text': 'What is chaining process in Node.js?',\n", | ||
" 'score': 0.7806176},\n", | ||
" {'index': 596, 'text': 'What is NPM in Node.js?', 'score': 0.76716936},\n", | ||
" {'index': 586, 'text': 'What is Callback in Node.js?', 'score': 0.7659653},\n", | ||
" {'index': 579, 'text': 'When to not use Node.js?', 'score': 0.7643588},\n", | ||
" {'index': 593,\n", | ||
" 'text': 'What is EventEmitter in Node.js?',\n", | ||
" 'score': 0.7514152},\n", | ||
" {'index': 580,\n", | ||
" 'text': 'What IDEs can you use for Node.js development?',\n", | ||
" 'score': 0.74787086}]" | ||
] | ||
}, | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"# for searching, you need to give the query_text and the number of the similar text you want\n", | ||
"TextSearch().find_similar(query_text=\"What are the key features of Node.js?\",top_n=10)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "e8b4c035", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.9" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
# Importing the proper classes | ||
from DeepTextSearch import LoadData,TextEmbedder,TextSearch | ||
|
||
# Load data from CSV file | ||
data = LoadData().from_csv("../your_file_name.csv") | ||
|
||
# For Serching we need to Embed Data first, After Embedding all the data stored on the local path | ||
TextEmbedder().embed(corpus_list=data) | ||
|
||
# for searching, you need to give the query_text and the number of the similar text you want | ||
TextSearch().find_similar(query_text="What are the key features of Node.js?",top_n=10) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
MIT License | ||
Copyright (c) 2021 Nilesh Verma | ||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
Oops, something went wrong.