-
Notifications
You must be signed in to change notification settings - Fork 777
/
Copy pathpredict.py
239 lines (206 loc) · 9.15 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Prediction interface for Cog ⚙️
# https://github.com/replicate/cog/blob/main/docs/python.md
from cog import BasePredictor, Input, Path
import torch
import numpy as np
import random
import os
import shutil
import subprocess
import time
os.environ["HF_HUB_CACHE"] = "models"
os.environ["HF_HUB_CACHE_OFFLINE"] = "true"
from diffusers.utils import load_image
from diffusers import EulerDiscreteScheduler
from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from huggingface_hub import hf_hub_download
from transformers import CLIPImageProcessor
from photomaker import PhotoMakerStableDiffusionXLPipeline
from gradio_demo.style_template import styles
MAX_SEED = np.iinfo(np.int32).max
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Photographic (Default)"
FEATURE_EXTRACTOR = "./feature-extractor"
SAFETY_CACHE = "./models/safety-cache"
SAFETY_URL = "https://weights.replicate.delivery/default/sdxl/safety-1.0.tar"
BASE_MODEL_URL = "https://weights.replicate.delivery/default/SG161222--RealVisXL_V3.0-11ee564ebf4bd96d90ed5d473cb8e7f2e6450bcf.tar"
BASE_MODEL_PATH = "models/SG161222/RealVisXL_V3.0"
PHOTOMAKER_URL = "https://weights.replicate.delivery/default/TencentARC--PhotoMaker/photomaker-v1.bin"
PHOTOMAKER_PATH = "models/photomaker-v1.bin"
def download_weights(url, dest, extract=True):
start = time.time()
print("downloading url: ", url)
print("downloading to: ", dest)
args = ["pget"]
if extract:
args.append("-x")
subprocess.check_call(args + [url, dest], close_fds=False)
print("downloading took: ", time.time() - start)
# utility function for style templates
def apply_style(style_name: str, positive: str, negative: str = "") -> tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive), n + " " + negative
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
self.device = "cuda" if torch.cuda.is_available() else "cpu"
# download PhotoMaker checkpoint to cache
# if we already have the model, this doesn't do anything
if not os.path.exists(PHOTOMAKER_PATH):
download_weights(PHOTOMAKER_URL, PHOTOMAKER_PATH, extract=False)
if not os.path.exists(BASE_MODEL_PATH):
download_weights(BASE_MODEL_URL, BASE_MODEL_PATH)
print("Loading safety checker...")
if not os.path.exists(SAFETY_CACHE):
download_weights(SAFETY_URL, SAFETY_CACHE)
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(
SAFETY_CACHE, torch_dtype=torch.float16
).to("cuda")
self.feature_extractor = CLIPImageProcessor.from_pretrained(FEATURE_EXTRACTOR)
self.pipe = PhotoMakerStableDiffusionXLPipeline.from_pretrained(
BASE_MODEL_PATH,
torch_dtype=torch.bfloat16,
use_safetensors=True,
variant="fp16",
).to(self.device)
self.pipe.load_photomaker_adapter(
os.path.dirname(PHOTOMAKER_PATH),
subfolder="",
weight_name=os.path.basename(PHOTOMAKER_PATH),
trigger_word="img",
)
self.pipe.id_encoder.to(self.device)
self.pipe.scheduler = EulerDiscreteScheduler.from_config(
self.pipe.scheduler.config
)
self.pipe.fuse_lora()
@torch.inference_mode()
def predict(
self,
input_image: Path = Input(
description="The input image, for example a photo of your face."
),
input_image2: Path = Input(
description="Additional input image (optional)",
default=None
),
input_image3: Path = Input(
description="Additional input image (optional)",
default=None
),
input_image4: Path = Input(
description="Additional input image (optional)",
default=None
),
prompt: str = Input(
description="Prompt. Example: 'a photo of a man/woman img'. The phrase 'img' is the trigger word.",
default="A photo of a person img",
),
style_name: str = Input(
description="Style template. The style template will add a style-specific prompt and negative prompt to the user's prompt.",
choices=STYLE_NAMES,
default=DEFAULT_STYLE_NAME,
),
negative_prompt: str = Input(
description="Negative Prompt. The negative prompt should NOT contain the trigger word.",
default="nsfw, lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry",
),
num_steps: int = Input(
description="Number of sample steps", default=20, ge=1, le=100
),
style_strength_ratio: float = Input(
description="Style strength (%)", default=20, ge=15, le=50
),
num_outputs: int = Input(
description="Number of output images", default=1, ge=1, le=4
),
guidance_scale: float = Input(
description="Guidance scale. A guidance scale of 1 corresponds to doing no classifier free guidance.", default=5, ge=1, le=10.0
),
seed: int = Input(description="Seed. Leave blank to use a random number", default=None, ge=0, le=MAX_SEED),
disable_safety_checker: bool = Input(
description="Disable safety checker for generated images.",
default=False
)
) -> list[Path]:
"""Run a single prediction on the model"""
# remove old outputs
output_folder = Path('outputs')
if output_folder.exists():
shutil.rmtree(output_folder)
os.makedirs(str(output_folder), exist_ok=False)
# randomize seed if necessary
if seed is None:
seed = random.randint(0, MAX_SEED)
print(f"Using seed {seed}...")
# check the prompt for the trigger word
image_token_id = self.pipe.tokenizer.convert_tokens_to_ids(self.pipe.trigger_word)
input_ids = self.pipe.tokenizer.encode(prompt)
if image_token_id not in input_ids:
raise ValueError(
f"Cannot find the trigger word '{self.pipe.trigger_word}' in text prompt!")
if input_ids.count(image_token_id) > 1:
raise ValueError(
f"Cannot use multiple trigger words '{self.pipe.trigger_word}' in text prompt!"
)
# check the negative prompt for the trigger word
if negative_prompt:
negative_prompt_ids = self.pipe.tokenizer.encode(negative_prompt)
if image_token_id in negative_prompt_ids:
raise ValueError(
f"Cannot use trigger word '{self.pipe.trigger_word}' in negative prompt!"
)
# apply the style template
prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)
# load the input images
input_id_images = []
for maybe_image in [input_image, input_image2, input_image3, input_image4]:
if maybe_image:
print(f"Loading image {maybe_image}...")
input_id_images.append(load_image(str(maybe_image)))
print(f"Setting seed...")
generator = torch.Generator(device=self.device).manual_seed(seed)
print("Start inference...")
print(f"[Debug] Prompt: {prompt}")
print(f"[Debug] Neg Prompt: {negative_prompt}")
start_merge_step = int(float(style_strength_ratio) / 100 * num_steps)
if start_merge_step > 30:
start_merge_step = 30
print(f"Start merge step: {start_merge_step}")
images = self.pipe(
prompt=prompt,
input_id_images=input_id_images,
negative_prompt=negative_prompt,
num_images_per_prompt=num_outputs,
num_inference_steps=num_steps,
start_merge_step=start_merge_step,
generator=generator,
guidance_scale=guidance_scale,
).images
if not disable_safety_checker:
print(f"Running safety checker...")
_, has_nsfw_content = self.run_safety_checker(images)
# save results to file
print(f"Saving images to file...")
output_paths = []
for i, image in enumerate(images):
if not disable_safety_checker:
if has_nsfw_content[i]:
print(f"NSFW content detected in image {i}")
continue
output_path = output_folder / f"image_{i}.png"
image.save(output_path)
output_paths.append(output_path)
return [Path(p) for p in output_paths]
def run_safety_checker(self, image):
safety_checker_input = self.feature_extractor(image, return_tensors="pt").to(
"cuda"
)
np_image = [np.array(val) for val in image]
image, has_nsfw_concept = self.safety_checker(
images=np_image,
clip_input=safety_checker_input.pixel_values.to(torch.float16),
)
return image, has_nsfw_concept