forked from dstahlke/gnuplot-iostream
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample-data-1d.cc
504 lines (420 loc) · 15.6 KB
/
example-data-1d.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
/*
Copyright (c) 2020 Daniel Stahlke
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// This demonstrates all sorts of data types that can be plotted using send1d(). It is not
// meant as a first tutorial; for that see example-misc.cc or the project wiki.
#include <vector>
#include <complex>
#include <cmath>
#include <array>
#include <valarray>
#include <boost/range/adaptor/transformed.hpp>
#include <boost/range/irange.hpp>
#include <boost/bind.hpp>
#ifdef USE_ARMA
#include <armadillo>
#endif
#ifdef USE_EIGEN
#include <Eigen/Dense>
#endif
#ifdef USE_BLITZ
#include <blitz/array.h>
#endif
#include "gnuplot-iostream.h"
#ifndef M_PI
# define M_PI 3.14159265358979323846
#endif
static constexpr int num_steps = 100;
double get_x(int step, double shift) {
double theta = 2.0*M_PI*step/(num_steps-1);
return std::cos(theta) * (1 + 0.3*std::cos(3.0*theta+2.0*M_PI*shift));
}
double get_y(int step, double shift) {
double theta = 2.0*M_PI*step/(num_steps-1);
return std::sin(theta) * (1 + 0.3*std::cos(3.0*theta+2.0*M_PI*shift));
}
double get_z(int step, double shift) {
double theta = 2.0*M_PI*step/(num_steps-1);
return 0.3*std::sin(3.0*theta+2.0*M_PI*shift);
}
// This doesn't have to be a template. It's just a template to show that such things are
// possible.
template <typename T>
struct MyTriple {
MyTriple() : x(0), y(0), z(0) { }
MyTriple(T _x, T _y, T _z) : x(_x), y(_y), z(_z) { }
T x, y, z;
};
// Tells gnuplot-iostream how to print objects of class MyTriple.
namespace gnuplotio {
template<typename T>
struct BinfmtSender<MyTriple<T>> {
static void send(std::ostream &stream) {
BinfmtSender<T>::send(stream);
BinfmtSender<T>::send(stream);
BinfmtSender<T>::send(stream);
}
};
template <typename T>
struct BinarySender<MyTriple<T>> {
static void send(std::ostream &stream, const MyTriple<T> &v) {
BinarySender<T>::send(stream, v.x);
BinarySender<T>::send(stream, v.y);
BinarySender<T>::send(stream, v.z);
}
};
// We don't use text mode in this demo. This is just here to show how it would go.
template<typename T>
struct TextSender<MyTriple<T>> {
static void send(std::ostream &stream, const MyTriple<T> &v) {
TextSender<T>::send(stream, v.x);
stream << " ";
TextSender<T>::send(stream, v.y);
stream << " ";
TextSender<T>::send(stream, v.z);
}
};
} // namespace gnuplotio
int main() {
Gnuplot gp;
// for debugging, prints to console
//Gnuplot gp(stdout);
// To send data as text rather than binary (slower but more compatible):
// FIXME function doesn't exist
//gp.transportBinary(false);
// To use temporary files rather then sending data through gnuplot's stdin:
//gp.useTmpFile(true);
int num_examples = 15;
#ifdef USE_ARMA
num_examples += 4;
#endif
#ifdef USE_EIGEN
num_examples += 4;
#endif
#ifdef USE_BLITZ
num_examples += 3;
#endif
double shift = 0;
gp << "set zrange [-1:1]\n";
auto plots = gp.splotGroup();
{
std::vector<std::pair<std::pair<double, double>, double>> pts;
for(int i=0; i<num_steps; i++) {
pts.emplace_back(
std::pair(get_x(i, shift), get_y(i, shift)),
get_z(i, shift));
}
plots.add_plot1d(pts, "with lines title 'vector of nested std::pair'");
}
shift += 1.0/num_examples;
{
// complex is treated as if it were a pair
std::vector<std::pair<std::complex<double>, double>> pts;
for(int i=0; i<num_steps; i++) {
pts.emplace_back(
std::complex<double>(get_x(i, shift), get_y(i, shift)),
get_z(i, shift));
}
plots.add_plot1d(pts, "with lines title 'vector of pair of cplx and double'");
}
shift += 1.0/num_examples;
{
std::vector<std::tuple<double, double, double>> pts;
for(int i=0; i<num_steps; i++) {
pts.emplace_back(
get_x(i, shift), get_y(i, shift), get_z(i, shift));
}
plots.add_plot1d(pts, "with lines title 'vector of std::tuple'");
}
shift += 1.0/num_examples;
{
std::vector<double> x_pts, y_pts, z_pts;
for(int i=0; i<num_steps; i++) {
x_pts.push_back(get_x(i, shift));
y_pts.push_back(get_y(i, shift));
z_pts.push_back(get_z(i, shift));
}
plots.add_plot1d(std::tuple(x_pts, y_pts, z_pts),
"with lines title 'std::tuple of vector'");
}
shift += 1.0/num_examples;
{
std::vector<std::array<double, 3>> pts(num_steps);
for(int i=0; i<num_steps; i++) {
pts[i][0] = get_x(i, shift);
pts[i][1] = get_y(i, shift);
pts[i][2] = get_z(i, shift);
}
plots.add_plot1d(pts, "with lines title 'vector of std::array'");
}
shift += 1.0/num_examples;
{
std::vector<std::vector<double>> pts(num_steps);
for(int i=0; i<num_steps; i++) {
pts[i].push_back(get_x(i, shift));
pts[i].push_back(get_y(i, shift));
pts[i].push_back(get_z(i, shift));
}
plots.add_plot1d(pts, "with lines title 'vector of vector'");
}
shift += 1.0/num_examples;
{
std::vector<std::vector<double>> pts(3);
for(int i=0; i<num_steps; i++) {
pts[0].push_back(get_x(i, shift));
pts[1].push_back(get_y(i, shift));
pts[2].push_back(get_z(i, shift));
}
plots.add_plot1d_colmajor(pts, "with lines title 'vector of vector (colmajor)'");
}
shift += 1.0/num_examples;
{
std::vector<MyTriple<double>> pts;
for(int i=0; i<num_steps; i++) {
pts.emplace_back(get_x(i, shift), get_y(i, shift), get_z(i, shift));
}
plots.add_plot1d(pts, "with lines title 'vector of MyTriple'");
}
shift += 1.0/num_examples;
{
// Note: C style arrays seem to work, but are a bit fragile since they easily decay to
// pointers, causing them to forget their lengths. It is highly recommended that you
// use std::array instead. These have the same size and efficiency of C style
// arrays, but act like STL containers.
double pts[num_steps][3];
for(int i=0; i<num_steps; i++) {
pts[i][0] = get_x(i, shift);
pts[i][1] = get_y(i, shift);
pts[i][2] = get_z(i, shift);
}
plots.add_plot1d(pts, "with lines title 'double[N][3]'");
}
shift += 1.0/num_examples;
{
// Note: C style arrays seem to work, but are a bit fragile since they easily decay to
// pointers, causing them to forget their lengths. It is highly recommended that you
// use std::array instead. These have the same size and efficiency of C style
// arrays, but act like STL containers.
double pts[3][num_steps];
for(int i=0; i<num_steps; i++) {
pts[0][i] = get_x(i, shift);
pts[1][i] = get_y(i, shift);
pts[2][i] = get_z(i, shift);
}
plots.add_plot1d_colmajor(pts, "with lines title 'double[N][3] (colmajor)'");
}
shift += 1.0/num_examples;
{
// Note: C style arrays seem to work, but are a bit fragile since they easily decay to
// pointers, causing them to forget their lengths. It is highly recommended that you
// use std::array instead. These have the same size and efficiency of C style
// arrays, but act like STL containers.
double x_pts[num_steps];
double y_pts[num_steps];
double z_pts[num_steps];
for(int i=0; i<num_steps; i++) {
x_pts[i] = get_x(i, shift);
y_pts[i] = get_y(i, shift);
z_pts[i] = get_z(i, shift);
}
plots.add_plot1d(std::forward_as_tuple(x_pts, y_pts, z_pts),
"with lines title 'std::tuple of double[N]'");
}
shift += 1.0/num_examples;
{
std::valarray<std::tuple<double, double, double>> pts(num_steps);
for(int i=0; i<num_steps; i++) {
pts[i] = std::tuple(
get_x(i, shift), get_y(i, shift), get_z(i, shift));
}
plots.add_plot1d(pts, "with lines title 'valarray of std::tuple'");
}
#ifdef USE_ARMA
shift += 1.0/num_examples;
{
arma::mat pts(num_steps, 3);
for(int i=0; i<num_steps; i++) {
pts(i, 0) = get_x(i, shift);
pts(i, 1) = get_y(i, shift);
pts(i, 2) = get_z(i, shift);
}
plots.add_plot1d(pts, "with lines title 'armadillo N*3'");
}
shift += 1.0/num_examples;
{
arma::mat pts(3, num_steps);
for(int i=0; i<num_steps; i++) {
pts(0, i) = get_x(i, shift);
pts(1, i) = get_y(i, shift);
pts(2, i) = get_z(i, shift);
}
plots.add_plot1d_colmajor(pts, "with lines title 'armadillo 3*N (colmajor)'");
}
shift += 1.0/num_examples;
{
arma::Row<double> x_pts(num_steps);
arma::Col<double> y_pts(num_steps);
arma::Col<double> z_pts(num_steps);
for(int i=0; i<num_steps; i++) {
x_pts(i) = get_x(i, shift);
y_pts(i) = get_y(i, shift);
z_pts(i) = get_z(i, shift);
}
plots.add_plot1d(std::tuple(x_pts, y_pts, z_pts),
"with lines title 'tuple of arma Row,Col,Col'");
}
shift += 1.0/num_examples;
{
arma::field<std::tuple<double,double,double>> pts(num_steps);
for(int i=0; i<num_steps; i++) {
pts(i) = std::tuple(
get_x(i, shift),
get_y(i, shift),
get_z(i, shift)
);
}
plots.add_plot1d(pts, "with lines title 'armadillo field of tuple'");
}
#endif // USE_ARMA
#ifdef USE_EIGEN
shift += 1.0/num_examples;
{
Eigen::MatrixXf pts(num_steps, 3);
for(int i=0; i<num_steps; i++) {
pts(i, 0) = get_x(i, shift);
pts(i, 1) = get_y(i, shift);
pts(i, 2) = get_z(i, shift);
}
plots.add_plot1d(pts, "with lines title 'eigen N*3'");
}
shift += 1.0/num_examples;
{
Eigen::MatrixXf pts(3, num_steps);
for(int i=0; i<num_steps; i++) {
pts(0, i) = get_x(i, shift);
pts(1, i) = get_y(i, shift);
pts(2, i) = get_z(i, shift);
}
plots.add_plot1d_colmajor(pts, "with lines title 'eigen 3*N (colmajor)'");
}
shift += 1.0/num_examples;
{
Eigen::VectorXf x_pts(num_steps);
Eigen::VectorXf y_pts(num_steps);
Eigen::VectorXf z_pts(num_steps);
for(int i=0; i<num_steps; i++) {
x_pts(i) = get_x(i, shift);
y_pts(i) = get_y(i, shift);
z_pts(i) = get_z(i, shift);
}
plots.add_plot1d(std::tuple(x_pts, y_pts, z_pts),
"with lines title 'tuple of eigen Col,Col,Col'");
}
shift += 1.0/num_examples;
{
Eigen::RowVectorXf x_pts(num_steps);
Eigen::RowVectorXf y_pts(num_steps);
Eigen::RowVectorXf z_pts(num_steps);
for(int i=0; i<num_steps; i++) {
x_pts(i) = get_x(i, shift);
y_pts(i) = get_y(i, shift);
z_pts(i) = get_z(i, shift);
}
plots.add_plot1d(std::tuple(x_pts, y_pts, z_pts),
"with lines title 'tuple of eigen Row,Row,Row'");
}
#endif // USE_EIGEN
#ifdef USE_BLITZ
shift += 1.0/num_examples;
{
blitz::Array<blitz::TinyVector<double, 3>, 1> pts(num_steps);
for(int i=0; i<num_steps; i++) {
pts(i)[0] = get_x(i, shift);
pts(i)[1] = get_y(i, shift);
pts(i)[2] = get_z(i, shift);
}
plots.add_plot1d(pts, "with lines title 'blitz::Array<blitz::TinyVector<double, 3>, 1>'");
}
shift += 1.0/num_examples;
{
blitz::Array<double, 2> pts(num_steps, 3);
for(int i=0; i<num_steps; i++) {
pts(i, 0) = get_x(i, shift);
pts(i, 1) = get_y(i, shift);
pts(i, 2) = get_z(i, shift);
}
plots.add_plot1d(pts, "with lines title 'blitz<double>(N*3)'");
}
shift += 1.0/num_examples;
{
blitz::Array<double, 2> pts(3, num_steps);
for(int i=0; i<num_steps; i++) {
pts(0, i) = get_x(i, shift);
pts(1, i) = get_y(i, shift);
pts(2, i) = get_z(i, shift);
}
plots.add_plot1d_colmajor(pts, "with lines title 'blitz<double>(3*N) (colmajor)'");
}
#endif // USE_BLITZ
shift += 1.0/num_examples;
{
std::function<std::tuple<double,double,double>(int)> f = [&shift](int i) {
return std::tuple(get_x(i, shift), get_y(i, shift), get_z(i, shift)); };
auto pts = boost::irange(0, num_steps) | boost::adaptors::transformed(f);
plots.add_plot1d(pts, "with lines title 'boost transform to tuple'");
}
shift += 1.0/num_examples;
{
auto steps = boost::irange(0, num_steps);
plots.add_plot1d(std::tuple(
steps | boost::adaptors::transformed(boost::bind(get_x, _1, shift)),
steps | boost::adaptors::transformed(boost::bind(get_y, _1, shift)),
steps | boost::adaptors::transformed(boost::bind(get_z, _1, shift))
), "with lines title 'tuple of boost transform'");
}
shift += 1.0/num_examples;
{
// Note: C style arrays seem to work, but are a bit fragile since they easily decay to
// pointers, causing them to forget their lengths. It is highly recommended that you
// use std::array instead. These have the same size and efficiency of C style
// arrays, but act like STL containers.
double x_pts[num_steps];
double y_pts[num_steps];
double z_pts[num_steps];
for(int i=0; i<num_steps; i++) {
x_pts[i] = get_x(i, shift);
y_pts[i] = get_y(i, shift);
z_pts[i] = get_z(i, shift);
}
// Note: std::tuple doesn't work here since it makes the arrays decay to pointers,
// and as a result they forget their lengths.
plots.add_plot1d(std::tie(x_pts, y_pts, z_pts),
"with lines title 'std::tie of double[N]'");
}
gp << plots;
shift += 1.0/num_examples;
//std::cout << shift << std::endl;
assert(std::fabs(shift - 1.0) < 1e-12);
#ifdef _WIN32
// For Windows, prompt for a keystroke before the Gnuplot object goes out of scope so that
// the gnuplot window doesn't get closed.
std::cout << "Press enter to exit." << std::endl;
std::cin.get();
#endif
return 0;
}