Skip to content

Commit

Permalink
Update README
Browse files Browse the repository at this point in the history
  • Loading branch information
yaront committed Dec 6, 2024
1 parent 13e0713 commit 5e4106e
Showing 1 changed file with 10 additions and 3 deletions.
13 changes: 10 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,16 +1,22 @@
<div align="center">
<picture>
<img src="https://i.imgur.com/TvQ8LmC.png" alt="The Kinase Library" width="50%">
<img src="https://i.imgur.com/Y6PmRsQ.jpeg" alt="The Kinase Library" width="50%">
</picture>

<hr/>

# [Click here for The Kinase Library Web Tool](https://kinase-library.phosphosite.org)

<picture>
<img src="https://i.imgur.com/sWUA4Rk.png" alt="The Kinase Library QR Code" width="20%">
</picture>

[![Twitter Follow](https://img.shields.io/twitter/follow/KinaseLibrary?style=social)](https://twitter.com/KinaseLibrary) &ensp;
[![License: CC BY-NC-SA 3.0](https://img.shields.io/badge/License-CC%20BY--NC--SA%203.0-lightgrey.svg)](https://creativecommons.org/licenses/by-nc-sa/3.0/) &ensp;
[![PyPI Latest Release](https://img.shields.io/pypi/v/kinase-library.svg)](https://pypi.org/project/kinase-library/)

<hr/>

</div>

**The Kinase Library** is a comprehensive Python package for analyzing phosphoproteomics data, focusing on kinase-substrate relationships. It provides tools for kinase prediction, enrichment analysis, and visualization, enabling researchers to gain insights into kinase activities and signaling pathways from phosphoproteomics datasets.
Expand Down Expand Up @@ -108,14 +114,15 @@ This is the expected output from using the PhosphoProteomics.predict() function.
Please cite the following papers when using this package:

**For the serine/threonine kinome:**
> Johnson, J. L., Yaron, T. M., Huntsman, E. M., Kerelsky, A., Song, J., Regev, A., ... & Cantley, L. C. (2023). **An atlas of substrate specificities for the human serine/threonine kinome**. _Nature_, 613(7945), 759-766. [http://doi.org/10.1074/mcp.TIR118.000943](https://doi.org/10.1038/s41586-022-05575-3)
> Johnson, J. L., Yaron, T. M., Huntsman, E. M., Kerelsky, A., Song, J., Regev, A., ... & Cantley, L. C. (2023). **An atlas of substrate specificities for the human serine/threonine kinome**. _Nature_, 613(7945), 759-766. [https://doi.org/10.1074/mcp.TIR118.000943](https://doi.org/10.1038/s41586-022-05575-3)
**For the tyrosine kinome:**
> Yaron-Barir, T. M., Joughin, B. A., Huntsman, E. M., Kerelsky, A., Cizin, D. M., Cohen, B. M., ... & Johnson, J. L. (2024). **The intrinsic substrate specificity of the human tyrosine kinome**. _Nature_, 1-8. [https://doi.org/10.1038/s41586-024-07407-y](https://doi.org/10.1038/s41586-024-07407-y)
**If you are using the MEA tool, please also cite:**
> Fang, Z., Liu, X., & Peltz, G. (2023). **GSEApy: a comprehensive package for performing gene set enrichment analysis in Python**. _Bioinformatics_, 39(1), btac757.
> Fang, Z., Liu, X., & Peltz, G. (2023). **GSEApy: a comprehensive package for performing gene set enrichment analysis in Python**. _Bioinformatics_, 39(1), btac757. [https://doi.org/10.1093/bioinformatics/btac757](https://doi.org/10.1093/bioinformatics/btac757)
## License

This package is distributed under the Creative Commons License. See `LICENSE` for more information.

0 comments on commit 5e4106e

Please sign in to comment.