-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
521 lines (395 loc) · 13.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
#!/usr/bin/env python
# -*- coding: utf-8 -*-
### CR - 20 (The Fake Ronaldo)
import numpy as np
import cv2
import collections
import serial
from picamera.array import PiRGBArray
from picamera import PiCamera
import time, math
import imutils
nondet = 10
whitemax = 0
lol = 4
lol2 = 5
greenmax = 0
val = False
cnt_blue = 0
blue_detected = False
blue_fre = True
frequency_map = {}
centres = []
def blur(img,kernel_size):
ram = cv2.medianBlur(img,kernel_size,0)
test = cv2.GaussianBlur(ram,(kernel_size,kernel_size),0)
return test
def canny(img,low_threshold,high_threshold):
return cv2.Canny(img,low_threshold,high_threshold)
def extract_lines(img, lines, color=[255, 0, 0], thickness=2):
# X cordinates of corresponding lane
left_x = collections.defaultdict(list)
right_x = collections.defaultdict(list)
top_x = collections.defaultdict(list)
# Y cordinates of corresponding lane
left_y = collections.defaultdict(list)
right_y = collections.defaultdict(list)
top_y = collections.defaultdict(list)
try:
for line in lines:
for x1,y1,x2,y2 in line:
# Calculate slope
slope = (y2-y1)*1.0/(x2-x1)
# Grouping together slopes of variation 4
# If abs(slope) is less than 20 deg it is in the top category
if math.fabs(slope) < math.tan(np.pi/9):
top_x[int(math.atan(slope)*60/np.pi)].extend([x1,x2])
top_y[int(math.atan(slope)*60/np.pi)].extend([y1,y2])
# If slope is less than -20 deg it is in the left category
elif slope < math.tan(-np.pi/9) and slope > math.tan(-np.pi*4/9):
left_x[int(math.atan(slope)*60/np.pi)].extend([x1,x2])
left_y[int(math.atan(slope)*60/np.pi)].extend([y1,y2])
# If slope is greater than 20 deg it is in the right category
elif slope > math.tan(np.pi/9) and slope < math.tan(np.pi*4/9):
right_x[int(math.atan(slope)*60/np.pi)].extend([x1,x2])
right_y[int(math.atan(slope)*60/np.pi)].extend([y1,y2])
except TypeError:
pass
max_y = img.shape[0]
min_y = 0
eqns = [None for i in range(3)]
# Use the slope for the angle that has the maximum occurence and square fits
# the points to get an approximate line equation that passes through all the point
# Left
try:
_, left_slope = max((len(v),k) for k,v in left_x.items())
lef_l = np.poly1d(np.polyfit(left_y[left_slope],left_x[left_slope],1))
left_x_st = int(lef_l(max_y))
left_x_en = int(lef_l(min_y))
cv2.line(img,(left_x_st,max_y),(left_x_en,min_y),[255,0,0],thickness)
eqns[0]=lef_l
except:
left_slope = None
print("left ignored")
# Right
try:
_, right_slope = max((len(v),k) for k,v in right_x.items())
rig_l = np.poly1d(np.polyfit(right_y[right_slope],right_x[right_slope],1))
right_x_st = int(rig_l(max_y))
right_x_en = int(rig_l(min_y))
cv2.line(img,(right_x_st,max_y),(right_x_en,min_y),[0,255,0],thickness)
eqns[1]=rig_l
except:
right_slope = None
print("right ignored")
# Top
try:
_, top_slope = max((len(v),k) for k,v in top_x.items())
top_l = np.poly1d(np.polyfit(top_y[top_slope],top_x[top_slope],1))
top_x_st = int(top_l(max_y))
top_x_en = int(top_l(min_y))
cv2.line(img,(top_x_st,max_y),(top_x_en,min_y),[0,0,255],thickness)
eqns[2]=top_l
except:
top_slope = None
print("top ignored")
return eqns,img
def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap):
# Extracts the hough lines
lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap)
# An empty black image
line_img = np.zeros((img.shape[0], img.shape[1], 3), dtype=np.uint8)
# Returns the eqns and the image extracted
return extract_lines(line_img, lines)
def find_move(eqns,img):
"""
1 - Left
1.5 - Forward Left
2 - Right
2.5 - Forward Right
3 - Move forward
4 - Reverse
"""
# When Only Right Lane is detected
if eqns[0] is None and eqns[1] is not None and eqns[2] is None:
return 1
# When only left is detected
if eqns[1] is None and eqns[0] is not None and eqns[2] is None:
return 2
# When right and top lane is detected
if eqns[0] is None and eqns[1] is not None and eqns[2] is not None:
cnt = np.sum(img > 100)
# When white pixel is less than 40
if cnt*1.0/tot < 0.40:
return 1.5
else:
return 3
# When left and top lane is detected
if eqns[1] is None and eqns[0] is not None and eqns[2] is not None:
cnt = np.sum(img > 100)
# When white pixel is less than 40
if cnt*1.0/tot < 0.40:
return 2.5
else:
return 3
# When no lines are there
if eqns[0] is None and eqns[1] is None and eqns[2] is None:
return 4
# When only top line is visible
if eqns[0] is None and eqns[1] is None:
a,b = np.hsplit(img,2)
cnta = np.sum(a > 100)
cntb = np.sum(b > 100)
cnt = np.sum(img > 100)
# If total pixel count is greater than 35%
if cnt*1.0/tot > 0.35:
return 3
# If left side image has more white pixels
elif cnta > cntb:
return 1
else:
return 2
return 3
def move_bot(board,num):
if num == 2:
print("RIGHT \n")
board.write("D")
time.sleep(0.2)
board.write("B")
return
if num == 2.5:
print("FORW RIGHT")
board.write("W")
time.sleep(0.2)
board.write("B")
time.sleep(0.2)
board.write("D")
time.sleep(0.2)
board.write("B")
return
if num == 1.5:
print("FORW LEFT")
board.write("W")
time.sleep(0.2)
board.write("B")
time.sleep(0.2)
board.write("A")
time.sleep(0.2)
board.write("B")
return
if num == 1:
print("LEFT \n")
board.write("A")
time.sleep(0.2)
board.write("B")
return
if num == 3:
print("FORWARD \n")
board.write("W")
time.sleep(0.2)
board.write("B")
return
if num == 4:
print("REVERSE \n")
board.write("R")
time.sleep(0.4)
board.write("B")
return
if num == 5:
board.write("B")
time.sleep(0.5)
board.write("L")
time.sleep(1)
board.write("U")
return
# Detects the ending green floor
def end_detect(img):
global greenmax
lower = np.array([50,110,90],dtype="uint8")
upper = np.array([95,170,150],dtype = "uint8")
print(img[img.shape[0]/2,img.shape[1]/2])
mask = cv2.inRange(img,lower,upper)
white = np.sum(mask > 100)
if white > greenmax:
greenmax = white
print('Green = ',white)
if greenmax > 1200 and white < 20:
greenmax=0
return True
else:
return False
# Detects the red led
def led_detect(img):
global nondet
global whitemax
lower = np.array([0,0,80],dtype="uint8")
upper = np.array([70,70,230],dtype = "uint8")
mask = cv2.inRange(img,lower,upper)
white = np.sum(mask > 100)
if nondet < 4:
nondet += 1
return False
if white > whitemax:
whitemax = white
print("Red = ",white)
if white < 50 and whitemax > 200:
nondet = 0
whitemax = 0
return True
else :
return False
# Centre of the contour
def find_centre(contour):
M = cv2.moments(contour)
cX = int(M["m10"] / M["m00"])
cY = int(M["m01"] / M["m00"])
return [cX,cY]
# Finds whether two blue blobs are present are not
def detect_blue(img):
lower = np.array([80,0,0],dtype="uint8")
upper = np.array([255,70,90],dtype = "uint8")
mask = cv2.inRange(img,lower,upper)
blue = np.sum(mask > 100)
if blue < 2000:
return False
cnts = cv2.findContours(mask, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
if len(cnts) < 2:
return False
for ind,countor in enumerate(cnts):
centres.append(find_centre(countor))
frequency_map[ind] = 0
return True
# Returns distance
def dist(a,b,c,d):
return (c-a)*(c-a)+(d-b)*(d-b)
def detect_freq(images):
for img in images:
# Get the binary
lower = np.array([80,0,0],dtype="uint8")
upper = np.array([255,70,90],dtype = "uint8")
mask = cv2.inRange(img,lower,upper)
cnts = cv2.findContours(mask, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
# If the corresponding blob is present in the image, increase its occurence value
for c in cnts:
cen = find_centre(c)
temp=10**9
val = -1
for ind,centre in enumerate(centres):
if dist(cen[0],cen[1],centre[0],centre[1]) < temp:
temp = dist(cen[0],cen[1],centre[0],centre[1])
val = ind
frequency_map[val] += 1
temp = -1
temp_low = 10**9
highest = lowest = None
for k,v in frequency_map.items():
if temp < v:
temp = v
highest = k
if temp_low > v:
temp_low = v
lowest = k
# Moves towards higher blinking frequency
if centres[highest][0] < centres[lowest][0]:
move_bot(board,1.5)
else:
move_bot(board,2.5)
if __name__ == '__main__':
# Initialising serial communication
global board
board = serial.Serial("/dev/ttyACM0",9600,timeout=1)
time.sleep(1)
# Initialising video feed
camera = PiCamera()
camera.resolution = (640, 480)
camera.framerate = 12
rawCapture = PiRGBArray(camera, size=(640, 480))
# Camera warmup time
time.sleep(1)
global tot
tot = 640*480
images = []
# Accessing the frames
for frame in camera.capture_continuous(rawCapture,format="bgr",use_video_port=True):
img = frame.array
############################ PATH LED ###############################
if not blue_detected:
if not val:
val = detect_blue(img)
if val:
cnt_blue+=1
images.append(img)
rawCapture.truncate(0)
if cnt_blue > 48:
blue_detected = True
val = False
cnt_blue = 0
continue
if blue_detected and blue_fre:
blue_fre = False
detect_freq(images)
rawCapture.truncate(0)
continue
######################################################################
############################ WALL LED ###############################
# Returns true if led disappears
led = led_detect(img)
if led:
lol = 0
lol += 1
# After 3 moves after detecting LED, blink
if lol == 3:
move_bot(board,5)
######################################################################
############################# END DETECT ###############################
end = end_detect(img)
if end:
lol2=0
lol2+=1
if lol2 == 2:
# move_bot(board,5)
board.write("B")
print("Reached Successfully")
exit(0)
############################# END DETECT ##############################
# Grey Scale
gray_image = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
# Blurring
gauss_gray = blur(gray_image,3)
# Binary
ran_start = 70
mask_white = cv2.inRange(gauss_gray,ran_start,255)
# Canny
low_threshold = 100
high_threshold = 300
canny_edges = canny(gauss_gray,low_threshold,high_threshold)
# Hough
threshold = 50
rho = 1
theta = np.pi/180
min_line_len = 60
max_line_gap = 10
eqns, hough_img = hough_lines(canny_edges,rho,theta,threshold,min_line_len,max_line_gap)
# Determining moves
num = find_move(eqns,mask_white)
# End, if taking reverse
if lol2 < 2 and num == 4:
board.write("B")
print("Reached Successfully")
exit(0)
# Move the bot
move_bot(board,num)
# Ready for next frame
rawCapture.truncate(0)
time.sleep(0.15)
#cv2.namedWindow("hough",cv2.WINDOW_NORMAL)
#cv2.namedWindow("canny",cv2.WINDOW_NORMAL)
#cv2.namedWindow("origin",cv2.WINDOW_NORMAL)
#cv2.namedWindow("maskWhite",cv2.WINDOW_NORMAL)
#cv2.imshow("hough",hough_img)
#cv2.imshow("canny",canny_edges)
#cv2.imshow("origin",img)
#cv2.imshow("maskWhite",mask_white)
#cv2.waitKey(1000)