This page provides basic tutorials about the usage of ReDet. For installation instructions, please see INSTALL.md.
It is recommended to symlink the dataset root to ReDet/data
.
Here, we give an example for single scale data preparation of DOTA-v1.5.
First, make sure your initial data are in the following structure.
data/dota15
├── train
│ ├──images
│ └── labelTxt
├── val
│ ├── images
│ └── labelTxt
└── test
└── images
Split the original images and create COCO format json.
python DOTA_devkit/prepare_dota1_5.py --srcpath path_to_dota --dstpath path_to_split_1024
Then you will get data in the following structure
dota15_1024
├── test1024
│ ├── DOTA_test1024.json
│ └── images
└── trainval1024
├── DOTA_trainval1024.json
└── images
For data preparation with data augmentation, refer to "DOTA_devkit/prepare_dota1_5_v2.py"
First, make sure your initial data are in the following structure.
data/HRSC2016
├── Train
│ ├──AllImages
│ └── Annotations
└── Test
│ ├──AllImages
│ └── Annotations
Then you need to convert HRSC2016 to DOTA's format, i.e.,
rename AllImages
to images
, convert xml Annotations
to DOTA's txt
format.
Here we provide a script from s2anet: HRSC2DOTA.py. It will be added to this repo later.
After that, your data/HRSC2016
should contain the following folders.
data/HRSC2016
├── Train
│ ├──images
│ └── labelTxt
└── Test
└── images
Then we need to generate json
labels with COCO's format.
python DOTA_devkit/HRSC20162COCO.py
- single GPU testing
- multiple GPU testing
You can use the following commands to test a dataset.
# single-gpu testing
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}]
# multi-gpu testing
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--out ${RESULT_FILE}]
# If you want to test ReDet under Cyclic group C_4 (default C_8), you need to pass the ENV: Orientation=4
# See mmdet/models/backbones/re_resnet.py for details
Orientation=4 python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--out ${RESULT_FILE}]
Optional arguments:
RESULT_FILE
: Filename of the output results in pickle format. If not specified, the results will not be saved to a file.
Examples:
Assume that you have already downloaded the checkpoints to work_dirs/
.
- Test ReDet.
python tools/test.py configs/ReDet/ReDet_re50_refpn_1x_dota15.py \
work_dirs/ReDet_re50_refpn_1x_dota15/ReDet_re50_refpn_1x_dota15-7f2d6dda.pth \
--out work_dirs/ReDet_re50_refpn_1x_dota15/results.pkl
- Test ReDet with 4 GPUs.
./tools/dist_test.sh configs/ReDet/ReDet_re50_refpn_1x_dota15.py \
work_dirs/ReDet_re50_refpn_1x_dota15/ReDet_re50_refpn_1x_dota15-7f2d6dda.pth \
4 --out work_dirs/ReDet_re50_refpn_1x_dota15/results.pkl
- Parse the results.pkl to the format needed for DOTA evaluation
python tools/parse_results.py --config configs/ReDet/ReDet_re50_refpn_1x_dota15.py --type OBB
- Test and evaluate ReDet on HRSC2016.
# generate results
python tools/test.py configs/ReDet/ReDet_re50_refpn_3x_hrsc2016.py \
work_dirs/ReDet_re50_refpn_3x_hrsc2016/ReDet_re50_refpn_3x_hrsc2016-d1b4bd29.pth \
--out work_dirs/ReDet_re50_refpn_3x_hrsc2016/results.pkl
# evaluation
# remeber to modify the results path in hrsc2016_evaluation.py
python DOTA_devkit/hrsc2016_evaluation.py
python demo_large_image.py
mmdetection implements distributed training and non-distributed training,
which uses MMDistributedDataParallel
and MMDataParallel
respectively.
All outputs (log files and checkpoints) will be saved to the working directory,
which is specified by work_dir
in the config file.
*Important*: The default learning rate in config files is for 8 GPUs. If you use less or more than 8 GPUs, you need to set the learning rate proportional to the GPU num, e.g., 0.01 for 4 GPUs and 0.04 for 16 GPUs.
python tools/train.py ${CONFIG_FILE}
# If you want to train a model under Cyclic group C_4 (default C_8), you need to pass the ENV: Orientation=4
# See mmdet/models/backbones/re_resnet.py for details
Orientation=4 python tools/train.py ${CONFIG_FILE}
If you want to specify the working directory in the command, you can add an argument --work_dir ${YOUR_WORK_DIR}
.
./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]
Optional arguments are:
--validate
(recommended): Perform evaluation at every k (default=1) epochs during the training.--work_dir ${WORK_DIR}
: Override the working directory specified in the config file.--resume_from ${CHECKPOINT_FILE}
: Resume from a previous checkpoint file.
If you run mmdetection on a cluster managed with slurm, you can just use the script slurm_train.sh
.
./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR} [${GPUS}]
Here is an example of using 16 GPUs to train Mask R-CNN on the dev partition.
./tools/slurm_train.sh dev mask_r50_1x configs/mask_rcnn_r50_fpn_1x.py /nfs/xxxx/mask_rcnn_r50_fpn_1x 16
You can check slurm_train.sh for full arguments and environment variables.
If you have just multiple machines connected with ethernet, you can refer to pytorch launch utility. Usually it is slow if you do not have high speed networking like infiniband.
The simplest way is to convert your dataset to existing dataset formats (COCO or PASCAL VOC).
Here we show an example of adding a custom dataset of 5 classes, assuming it is also in COCO format.
In mmdet/datasets/my_dataset.py
:
from .coco import CocoDataset
class MyDataset(CocoDataset):
CLASSES = ('a', 'b', 'c', 'd', 'e')
In mmdet/datasets/__init__.py
:
from .my_dataset import MyDataset
Then you can use MyDataset
in config files, with the same API as CocoDataset.
It is also fine if you do not want to convert the annotation format to COCO or PASCAL format. Actually, we define a simple annotation format and all existing datasets are processed to be compatible with it, either online or offline.
The annotation of a dataset is a list of dict, each dict corresponds to an image.
There are 3 field filename
(relative path), width
, height
for testing,
and an additional field ann
for training. ann
is also a dict containing at least 2 fields:
bboxes
and labels
, both of which are numpy arrays. Some datasets may provide
annotations like crowd/difficult/ignored bboxes, we use bboxes_ignore
and labels_ignore
to cover them.
Here is an example.
[
{
'filename': 'a.jpg',
'width': 1280,
'height': 720,
'ann': {
'bboxes': <np.ndarray, float32> (n, 4),
'labels': <np.ndarray, float32> (n, ),
'bboxes_ignore': <np.ndarray, float32> (k, 4),
'labels_ignore': <np.ndarray, float32> (k, ) (optional field)
}
},
...
]
There are two ways to work with custom datasets.
-
online conversion
You can write a new Dataset class inherited from
CustomDataset
, and overwrite two methodsload_annotations(self, ann_file)
andget_ann_info(self, idx)
, like CocoDataset and VOCDataset. -
offline conversion
You can convert the annotation format to the expected format above and save it to a pickle or json file, like pascal_voc.py. Then you can simply use
CustomDataset
.
We basically categorize model components into 4 types.
- backbone: usually a FCN network to extract feature maps, e.g., ResNet, MobileNet.
- neck: the component between backbones and heads, e.g., FPN, PAFPN.
- head: the component for specific tasks, e.g., bbox prediction and mask prediction.
- roi extractor: the part for extracting RoI features from feature maps, e.g., RoI Align.
Here we show how to develop new components with an example of MobileNet.
- Create a new file
mmdet/models/backbones/mobilenet.py
.
import torch.nn as nn
from ..registry import BACKBONES
@BACKBONES.register
class MobileNet(nn.Module):
def __init__(self, arg1, arg2):
pass
def forward(x): # should return a tuple
pass
- Import the module in
mmdet/models/backbones/__init__.py
.
from .mobilenet import MobileNet
- Use it in your config file.
model = dict(
...
backbone=dict(
type='MobileNet',
arg1=xxx,
arg2=xxx),
...
For more information on how it works, you can refer to TECHNICAL_DETAILS.md (TODO).