💻 欢迎在云边协同领域工作的同学一起交流
💻 如果有一些代码中的bug,请提出issue,我尽量完善
🥳 本项目根据经典论文:Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge进行实现,为DNN模型选取划分点后分别部署在云端设备和边端设备上进行协同推理(Collabrative Inference)。
具体工作:
1)初步使用四种经典的DNN模型进行构建。
2)DNN模型层级特征研究:Layer latency 和 Size of output data。
2)Deployment Phase:在本地机器运行DNN层得到构建预测模型,提供模型参数。
3)Runtime Phase:实现DNN模型协同推理,具体脚本命令参考下面的描述。
项目中提供了模型参数,可以直接clone到本地运行。
Neurosurgeon
├── cloud_api.py # 模拟云端设备入口
├── deployment.py # 部署阶段
├── edge_api.py # 模拟边端设备入口
├── models # 采用的DNN模型
│ ├── AlexNet.py
│ ├── LeNet.py
│ ├── MobileNet.py
│ └── VggNet.py
├── net # 网络模块
│ ├── net_utils.py # 网络功能方法
│ ├── monitor_client.py # 带宽监视器客户端
│ └── monitor_server.py # 带宽监视器服务端
│ └── monitor_test.py # 带宽监视器测试服务
├── predictor # 预测器模块
│ ├── config # 模型参数
│ │ ├── cloud
│ │ └── edge
│ ├── dataset # 六种不同DNN层 采集数据集
│ │ ├── cloud
│ │ └── edge
│ ├── get_datasets_func.py # 读取数据集的过程
│ ├── kernel_flops.py
│ └── predictor_utils.py # 预测器功能
└── utils # 其他工具
├── excel_utils.py # excel表格操作功能
└── inference_utils.py # 协同推理功能
python 3.9
torch==1.9.0.post2
torchvision==0.10.0
xlrd==2.0.1
apscheduler
- 一般用于评估对于DNN推理时延的性能改进:每次需要通过指令向客户端提供任务
- 带宽数据为每次进行推理之前 进行单次监测
云端设备上运行 : 可以改成服务端开放的ip和端口;-d表示云端使用cpu还是gpu:输入参数"cpu"或"cuda"
python cloud_api.py -i 127.0.0.1 -p 9999 -d cpu
边端设备上上运行:-i和-d为服务端开放的ip和端口;-d表示边端使用cpu还是gpu:输入参数"cpu"或"cuda"
# -t表示模型类型 传入参数可以为 "alex_net" "vgg_net" "le_net" "mobilenet"
python edge_api.py -i 127.0.0.1 -p 9999 -d cpu -t vgg_net
单机运行结果如下:
云端设备: python cloud_api.py -i 127.0.0.1 -p 9999 -d cpu
successfully connection :<socket.socket fd=6, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 9999), raddr=('127.0.0.1', 64595)>
get model type successfully.
get partition point successfully.
get edge_output and transfer latency successfully.
short message , transfer latency has been sent successfully
short message , cloud latency has been sent successfully
================= DNN Collaborative Inference Finished. ===================
边端设备: python edge_api.py -i 127.0.0.1 -p 9999 -d cpu -t alex_net
(tjyy) tianjiangyu@tianjiangyudeMacBook-Pro Neurosurgeon % python edge_api.py -i 127.0.0.1 -p 9999 -d cpu -t alex_net
get bandwidth value : 3259.5787388244685 MB/s
best latency : 10.07 ms , best partition point : 0 - None
----------------------------------------------------------------------------------------------------------
short message , model type has been sent successfully
short message , partition strategy has been sent successfully
alex_net 在边缘端设备上推理完成 - 0.072 ms
get yes , edge output has been sent successfully
alex_net 传输完成 - 0.129 ms
alex_net 在云端设备上推理完成 - 34.621 ms
================= DNN Collaborative Inference Finished. ===================
- tasks_cloud_api.py开启后:开启后分别启动两个进程(两个端口),分别用于等待边缘端传来的任务以及定时采集带宽数据
- tasks_edge_api.py开启后:负责从queue中逐个获取不同的DNN推理任务,并利用云边协同运算进行推理。
设计细节:
- 使用BackgroundScheduler异步调度器,不会阻塞主进程的运行,在后台进行调度,每隔1s监测一次带宽
- 边缘设备不断从队列中获取任务,结合当前的带宽状况进行边缘端推理
- 云端设备完成后一半部分的推理任务
边缘设备运行:python tasks_edge_api.py -i 127.0.0.1 -p 9999 -d cpu
tasks list info : ['le_net', 'mobile_net', 'le_net', 'alex_net', 'vgg_net', 'vgg_net', 'vgg_net', 'le_net', 'mobile_net', 'mobile_net', 'alex_net', 'vgg_net', 'mobile_net', 'vgg_net', 'alex_net', 'alex_net', 'alex_net', 'le_net', 'alex_net', 'vgg_net', 'mobile_net', 'vgg_net', 'alex_net', 'le_net', 'vgg_net', 'vgg_net', 'le_net', 'alex_net', 'vgg_net', 'mobile_net', 'mobile_net', 'alex_net', 'alex_net', 'vgg_net', 'vgg_net', 'le_net', 'le_net', 'le_net', 'vgg_net', 'mobile_net']
===================== start inference tasks =====================
get bandwidth value : 7152.80666553514 MB/s
get model type: le_net
best latency : 88.77 ms , best partition point : 0 - None
----------------------------------------------------------------------------------------------------------
short message , model type has been sent successfully
short message , partition strategy has been sent successfully
le_net 在边缘端设备上推理完成 - 0.001 ms
get yes , edge output has been sent successfully
le_net 传输完成 - 0.098 ms
le_net 在云端设备上推理完成 - 17.468 ms
================= DNN Collaborative Inference Finished. ===================
get bandwidth value : 7152.80666553514 MB/s
get model type: mobile_net
best latency : 115.15 ms , best partition point : 0 - None
----------------------------------------------------------------------------------------------------------
short message , model type has been sent successfully
short message , partition strategy has been sent successfully
mobile_net 在边缘端设备上推理完成 - 0.001 ms
get yes , edge output has been sent successfully
mobile_net 传输完成 - 0.254 ms
mobile_net 在云端设备上推理完成 - 103.763 ms
================= DNN Collaborative Inference Finished. ===================
.....
云端设备运行:python tasks_cloud_api.py -i 127.0.0.1 -p 9999 -d cpu
successfully connection :<socket.socket fd=6, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 9999), raddr=('127.0.0.1', 50656)>
get model type successfully.
get partition point successfully.
get edge_output and transfer latency successfully.
short message , transfer latency has been sent successfully
short message , cloud latency has been sent successfully
================= DNN Collaborative Inference Finished. ===================
successfully connection :<socket.socket fd=4, family=AddressFamily.AF_INET, type=SocketKind.SOCK_STREAM, proto=0, laddr=('127.0.0.1', 9999), raddr=('127.0.0.1', 50661)>
get model type successfully.
get partition point successfully.
get edge_output and transfer latency successfully.
short message , transfer latency has been sent successfully
short message , cloud latency has been sent successfully
================= DNN Collaborative Inference Finished. ===================
...
Neurosurgeon是云边协同推理中的优秀框架,首次实现了将DNN模型部署在云边端设备进行协同推理。
但其也有相应的局限性:
- 只适用于链式拓扑结构
- 没有考虑模型的多层次结构以及各种DAG拓扑结构 - 可以参考DADS如何解决,后续会继续复现DADS框架
- 只考虑了静态网络环境下的划分状况 - 参考CAS论文如何解决动态网络条件
- 高负载任务情况下如何优化任务调度也是考虑的重点
可以考虑改进的点:
- 线性回归不太准确 - 如何提升预测器性能,可以精确预测DNN层的推理时延 ✅ 因为数据采集较少
- 已经使用多进程模式,在主任务推理之前 新开启一个进程,用来发送数据获取网络带宽 ✅
- 注意通信过程中的粘包问题 ✅ 基本不会出现bug
如果对本项目有更好的想法或者交流,可以在GitHub Issue提出问题