-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathapp.py
166 lines (135 loc) · 5.32 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
from sqlalchemy.ext.automap import automap_base
from sqlalchemy.orm import Session
from sqlalchemy import create_engine, func
from sqlalchemy import inspect
from sqlalchemy import func
from sqlalchemy import create_engine,MetaData,Table,Column
import BubbleUtilities
import pandas as pd
from flask import (
Flask,
render_template,
jsonify)
app = Flask(__name__)
engine = create_engine('sqlite:///SevereWeather.sqlite')
metadata = MetaData()
metadata.reflect(engine)
Base = automap_base(metadata=metadata)
Base.prepare()
Base.metadata.tables
from sqlalchemy import inspect,func
inspector = inspect(engine)
Events = Table('Events',metadata)
inspector.reflecttable(Events,None)
session = Session(bind=engine)
#home route
@app.route("/")
def home():
return render_template("index.html")
#home route
@app.route("/statewide")
def stateshome():
return render_template("states.html")
@app.route("/states")
def getStates():
states_df = pd.read_csv('datasets/state_wise_data.csv')
return jsonify(states_df.to_dict(orient='records'))
@app.route("/state/<state_code>")
def getTypeEventCountByState(state_code):
results = session.query(Events.columns['type'],func.count(Events.columns['loss'])).\
filter(Events.columns['st'] == state_code).\
group_by(Events.columns['type']).\
order_by(Events.columns['st'] ).all()
return jsonify(results)
@app.route("/bubble/<selected_year>")
def getBubbleChart(selected_year):
results = session.query(Events.columns['type'],Events.columns['mo'],func.max(Events.columns['mag']),func.sum(Events.columns['loss'])).\
filter(Events.columns['yr'] == selected_year).\
filter(Events.columns['mag'] >= 0).\
group_by(Events.columns['type'],Events.columns['mo']).\
order_by(Events.columns['mo']).all()
print(results)
dataset = BubbleUtilities.getWeatherMagnitudeOverMonths(selected_year,results)
print(dataset)
return jsonify(dataset)
@app.route("/events/<query>")
def getevent(query):
state_list = ['AK', 'AL', 'AR', 'AZ', 'CA', 'CO', 'CT', 'DC', 'DE', 'FL', 'GA', 'HI', 'IA', 'ID', 'IL', 'IN', 'KS', 'KY', 'LA', 'MA', 'MD', 'ME', 'MI', 'MN', 'MO', 'MS', 'MT', 'NC', 'ND', 'NE', 'NH', 'NJ', 'NM', 'NV', 'NY', 'OH', 'OK', 'OR', 'PA', 'PR', 'RI', 'SC', 'SD', 'TN', 'TX', 'UT', 'VA', 'VT', 'WA', 'WI', 'WV', 'WY']
empty_list = []
for s in state_list:
wind_count = 0
torn_count = 0
hail_count = 0
empty_dict = {}
state_results = session.query(Events).\
filter(Events.columns.st == s).\
filter(Events.columns.yr == query)
for a in state_results:
if a.type == "wind":
wind_count+= 1
elif a.type == "torn":
torn_count += 1
else:
hail_count += 1
empty_dict['ST'] = s
empty_dict["Tornados"] = torn_count
empty_dict["Hail"] = hail_count
empty_dict["Wind"] = wind_count
empty_dict["Year"] = query
empty_dict["Total Events"] = torn_count + hail_count + wind_count
empty_list.append(empty_dict)
return jsonify(empty_list)
@app.route("/coords/<year>")
def getCoords(year):
results = session.query(Events.columns.yr, Events.columns.st, Events.columns.slat, Events.columns.slon, Events.columns.type, Events.columns.mag, Events.columns.date_time).\
filter(Events.columns.yr == year)
empty_coords = []
for result in results:
empty_coords.append(result)
return jsonify(empty_coords)
@app.route("/piechart/<year>")
def getPieChart(year):
total_loss_results = session.query(func.sum(Events.columns['loss'])).\
filter(Events.columns['yr'] == year).first()
total_crop_loss_results = session.query(func.sum(Events.columns['closs'])).\
filter(Events.columns['yr'] == year).first()
total_loss = round(total_loss_results[0],2)
total_crop_loss = round(total_crop_loss_results[0],2)
if year != "2016":
conv_total_loss = total_loss * 1000000
conv_total_crop = total_crop_loss * 1000000
else:
conv_total_loss = total_loss
conv_total_crop = total_crop_loss
complete_loss = conv_total_loss + conv_total_crop
print(total_crop_loss)
print(total_loss)
print(complete_loss)
results = session.query(Events.columns['type'],(func.sum(Events.columns['loss'])/total_loss)*100).\
filter(Events.columns['yr'] == year).\
group_by(Events.columns['type'])
inj_results = session.query(Events.columns.type,func.sum(Events.columns.inj), func.sum(Events.columns.fat)).\
group_by(Events.columns.type)
inj_list = []
for i in inj_results:
inj_dict = {}
inj_dict["Year"] = year
inj_dict["Type"] = i[0]
inj_dict["Injuries"] = i[1]
inj_dict["Fatalities"] = i[2]
inj_list.append(inj_dict)
print(inj_list)
pie_chart_data = {
'labels':[],
'values':[],
'total_loss': conv_total_loss,
'total_crop_loss' : conv_total_crop,
'total_complete_loss' : complete_loss,
'injury_data' : inj_list
}
for r in results:
pie_chart_data['labels'].append(r[0])
pie_chart_data['values'].append(round(r[1]))
return jsonify(pie_chart_data)
if __name__ == "__main__":
app.run(debug = True)