-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagents.py
178 lines (143 loc) · 5.76 KB
/
agents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import random
from collections import namedtuple
import math
import torch
import torch.nn.functional as fn
from torch import nn, optim, LongTensor, FloatTensor, ByteTensor
from torch.autograd import Variable
import numpy as np
from common import Point
Transition = namedtuple('Transition', (
'state', 'action', 'next_state', 'reward'
))
class ReplayMemory(object):
def __init__(self, capacity):
self.capacity = capacity
self.memory = []
self.position = 0
def push(self, *args):
"""Saves a transition."""
if len(self.memory) < self.capacity:
self.memory.append(None)
self.memory[self.position] = Transition(*args)
self.position = (self.position + 1) % self.capacity
def sample(self, batch_size):
return random.sample(self.memory, batch_size)
def __len__(self):
return len(self.memory)
class DQNetwork(nn.Module):
def __init__(self):
super(DQNetwork, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=2, stride=2)
self.bn1 = nn.BatchNorm2d(16)
self.conv2 = nn.Conv2d(16, 32, kernel_size=2, stride=2)
self.bn2 = nn.BatchNorm2d(32)
self.conv3 = nn.Conv2d(32, 32, kernel_size=2, stride=2)
self.bn3 = nn.BatchNorm2d(32)
self.head = nn.Linear(128, 4)
def forward(self, x):
x = fn.relu(self.bn1(self.conv1(x)))
x = fn.relu(self.bn2(self.conv2(x)))
x = fn.relu(self.bn3(self.conv3(x)))
return self.head(x.view(x.size(0), -1))
BATCH_SIZE = 64
GAMMA = 0.999
EPS_START = 0.9
EPS_END = 0.05
EPS_DECAY = 200
def calc_reward(snake, world):
if not snake.alive:
return 0, True
elif np.sum(world % 10 > 0) > len(snake.pieces):
return 0, False
else:
return (len(snake.pieces) - 2), True
MOVES = [
Point(-1, 0),
Point(1, 0),
Point(0, -1),
Point(0, 1),
]
def world_to_state(world: np.ndarray):
s = torch.from_numpy(world.copy())
return s.unsqueeze(0).type(FloatTensor).unsqueeze(0)
class RLAgent:
def __init__(self, init_state: np.ndarray):
self.model = DQNetwork()
self.optimizer = optim.RMSprop(self.model.parameters())
self.memory = ReplayMemory(10_000)
self.steps_done = 0
self.current_state = world_to_state(init_state)
self.next_state = None
self.last_action = None
self.episode_reward = 0
def reset(self, world: np.ndarray):
self.current_state = world_to_state(world)
self.next_state = None
self.last_action = None
print(self.episode_reward)
self.episode_reward = 0
def get_move(self, snake, world):
sample = random.random()
eps_threshold = EPS_END + (EPS_START - EPS_END) * math.exp(-1. * self.steps_done / EPS_DECAY)
self.steps_done += 1
if sample > eps_threshold:
state = world_to_state(world)
self.last_action = self.model(
Variable(state, volatile=True).type(FloatTensor)
).data.max(1)[1].view(1, 1)
else:
self.last_action = LongTensor([[random.randrange(4)]])
return MOVES[self.last_action[0][0]]
def update(self, snake, world: np.ndarray):
state = world_to_state(world)
reward, done = calc_reward(snake, world)
self.episode_reward += reward
reward = FloatTensor([reward])
if not done:
self.next_state = state
else:
self.next_state = None
self.memory.push(self.current_state, self.last_action, self.next_state, reward)
self.current_state = self.next_state
self.optimize_model()
return not done
def optimize_model(self):
if len(self.memory) < BATCH_SIZE:
return
transitions = self.memory.sample(BATCH_SIZE)
# Transpose the batch (see http://stackoverflow.com/a/19343/3343043 for
# detailed explanation).
batch = Transition(*zip(*transitions))
# Compute a mask of non-final states and concatenate the batch elements
non_final_mask = ByteTensor(tuple(map(lambda s: s is not None,
batch.next_state)))
# We don't want to backprop through the expected action values and volatile
# will save us on temporarily changing the model parameters'
# requires_grad to False!
non_final_next_states = Variable(torch.cat([s for s in batch.next_state
if s is not None]),
volatile=True)
state_batch = Variable(torch.cat(batch.state))
action_batch = Variable(torch.cat(batch.action))
reward_batch = Variable(torch.cat(batch.reward))
# Compute Q(s_t, a) - the model computes Q(s_t), then we select the
# columns of actions taken
state_action_values = self.model(state_batch).gather(1, action_batch)
# Compute V(s_{t+1}) for all next states.
next_state_values = Variable(torch.zeros(BATCH_SIZE).type(FloatTensor))
next_state_values[non_final_mask] = self.model(non_final_next_states).max(1)[0]
# Now, we don't want to mess up the loss with a volatile flag, so let's
# clear it. After this, we'll just end up with a Variable that has
# requires_grad=False
next_state_values.volatile = False
# Compute the expected Q values
expected_state_action_values = (next_state_values * GAMMA) + reward_batch
# Compute Huber loss
loss = fn.smooth_l1_loss(state_action_values, expected_state_action_values)
# Optimize the model
self.optimizer.zero_grad()
loss.backward()
for param in self.model.parameters():
param.grad.data.clamp_(-1, 1)
self.optimizer.step()