- pytorch 1.1
- loguru
- scipy
SSDH_PyTorch
optional arguments:
-h, --help show this help message and exit
-d DATASET, --dataset DATASET
Dataset name.
-r ROOT, --root ROOT Path of dataset
-c CODE_LENGTH, --code-length CODE_LENGTH
Binary hash code length.(default: 12)
-T MAX_ITER, --max-iter MAX_ITER
Number of iterations.(default: 50)
-l LR, --lr LR Learning rate.(default: 1e-3)
-q NUM_QUERY, --num-query NUM_QUERY
Number of query data points.(default: 1000)
-t NUM_TRAIN, --num-train NUM_TRAIN
Number of training data points.(default: 5000)
-w NUM_WORKERS, --num-workers NUM_WORKERS
Number of loading data threads.(default: 0)
-b BATCH_SIZE, --batch-size BATCH_SIZE
Batch size.(default: 24)
-a ARCH, --arch ARCH CNN architecture.(default: vgg16)
-k TOPK, --topk TOPK Calculate map of top k.(default: 5000)
-v, --verbose Print log.
--train Training mode.
--resume Resume mode.
--evaluate Evaluate mode.
-g GPU, --gpu GPU Using gpu.(default: False)
-e EVALUATE_INTERVAL, --evaluate-interval EVALUATE_INTERVAL
Interval of evaluation.(default: 500)
-s SNAPSHOT_INTERVAL, --snapshot-interval SNAPSHOT_INTERVAL
Interval of evaluation.(default: 800)
-C CHECKPOINT, --checkpoint CHECKPOINT
Path of checkpoint.
--alpha ALPHA Hyper-parameter.(default:2)
--beta BETA Hyper-parameter.(default:2)
cifar10: 1000 query images, 5000 training images.
nus-wide: Top 10 categories, 5000 query images, 5000 training images.
flickr25k: 2000 query images, 10000 training images.
16 bits | 32 bits | 64 bits | 128 bits | |
---|---|---|---|---|
cifar-10 MAP@5000 | 0.2511 | 0.2414 | 0.2695 | 0.2871 |
nus-wide MAP@5000 | ||||
flickr25k MAP@5000 | 0.7737 | 0.7461 | 0.7583 | 0.7415 |