-
Notifications
You must be signed in to change notification settings - Fork 128
/
Copy pathevaluate_json.py
84 lines (68 loc) · 3.4 KB
/
evaluate_json.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torch
import tqdm
from evaluation.dataset import HDMapNetEvalDataset
from evaluation.chamfer_distance import semantic_mask_chamfer_dist_cum
from evaluation.AP import instance_mask_AP
from evaluation.iou import get_batch_iou
SAMPLED_RECALLS = torch.linspace(0.1, 1, 10)
THRESHOLDS = [2, 4, 6]
def get_val_info(args):
data_conf = {
'xbound': args.xbound,
'ybound': args.ybound,
'thickness': args.thickness,
}
dataset = HDMapNetEvalDataset(args.version, args.dataroot, args.eval_set, args.result_path, data_conf)
data_loader = torch.utils.data.DataLoader(dataset, batch_size=args.bsz, shuffle=False, drop_last=False)
total_CD1 = torch.zeros(args.max_channel).cuda()
total_CD2 = torch.zeros(args.max_channel).cuda()
total_CD_num1 = torch.zeros(args.max_channel).cuda()
total_CD_num2 = torch.zeros(args.max_channel).cuda()
total_intersect = torch.zeros(args.max_channel).cuda()
total_union = torch.zeros(args.max_channel).cuda()
AP_matrix = torch.zeros((args.max_channel, len(THRESHOLDS))).cuda()
AP_count_matrix = torch.zeros((args.max_channel, len(THRESHOLDS))).cuda()
print('running eval...')
for pred_map, confidence_level, gt_map in tqdm.tqdm(data_loader):
# iou
pred_map = pred_map.cuda()
confidence_level = confidence_level.cuda()
gt_map = gt_map.cuda()
intersect, union = get_batch_iou(pred_map, gt_map)
CD1, CD2, num1, num2 = semantic_mask_chamfer_dist_cum(pred_map, gt_map, args.xbound[2], args.ybound[2], threshold=args.CD_threshold)
instance_mask_AP(AP_matrix, AP_count_matrix, pred_map, gt_map, args.xbound[2], args.ybound[2],
confidence_level, THRESHOLDS, sampled_recalls=SAMPLED_RECALLS)
total_intersect += intersect.cuda()
total_union += union.cuda()
total_CD1 += CD1
total_CD2 += CD2
total_CD_num1 += num1
total_CD_num2 += num2
CD_pred = total_CD1 / total_CD_num1
CD_label = total_CD2 / total_CD_num2
CD = (total_CD1 + total_CD2) / (total_CD_num1 + total_CD_num2)
CD_pred[CD_pred > args.CD_threshold] = args.CD_threshold
CD_label[CD_label > args.CD_threshold] = args.CD_threshold
CD[CD > args.CD_threshold] = args.CD_threshold
return {
'iou': total_intersect / total_union,
'CD_pred': CD_pred,
'CD_label': CD_label,
'CD': CD,
'Average_precision': AP_matrix / AP_count_matrix,
}
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Evaluate nuScenes local HD Map Construction Results.')
parser.add_argument('--result_path', type=str)
parser.add_argument('--dataroot', type=str, default='dataset/nuScenes/')
parser.add_argument('--bsz', type=int, default=4)
parser.add_argument('--version', type=str, default='v1.0-mini', choices=['v1.0-trainval', 'v1.0-mini'])
parser.add_argument('--eval_set', type=str, default='mini_val', choices=['train', 'val', 'test', 'mini_train', 'mini_val'])
parser.add_argument('--thickness', type=int, default=5)
parser.add_argument('--max_channel', type=int, default=3)
parser.add_argument('--CD_threshold', type=int, default=5)
parser.add_argument("--xbound", nargs=3, type=float, default=[-30.0, 30.0, 0.15])
parser.add_argument("--ybound", nargs=3, type=float, default=[-15.0, 15.0, 0.15])
args = parser.parse_args()
print(get_val_info(args))