forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
slitherlink_sat.cc
259 lines (231 loc) · 9.66 KB
/
slitherlink_sat.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Solve the Slitherlink problem:
// see https://en.wikipedia.org/wiki/Slitherlink
#include <string>
#include <vector>
#include "absl/strings/str_format.h"
#include "ortools/sat/cp_model.h"
#include "ortools/sat/model.h"
const std::vector<std::vector<int> > tiny = {{3, 3, 1}};
const std::vector<std::vector<int> > small = {
{3, 2, -1, 3}, {-1, -1, -1, 2}, {3, -1, -1, -1}, {3, -1, 3, 1}};
const std::vector<std::vector<int> > medium = {
{-1, 0, -1, 1, -1, -1, 1, -1}, {-1, 3, -1, -1, 2, 3, -1, 2},
{-1, -1, 0, -1, -1, -1, -1, 0}, {-1, 3, -1, -1, 0, -1, -1, -1},
{-1, -1, -1, 3, -1, -1, 0, -1}, {1, -1, -1, -1, -1, 3, -1, -1},
{3, -1, 1, 3, -1, -1, 3, -1}, {-1, 0, -1, -1, 3, -1, 3, -1}};
const std::vector<std::vector<int> > big = {
{3, -1, -1, -1, 2, -1, 1, -1, 1, 2},
{1, -1, 0, -1, 3, -1, 2, 0, -1, -1},
{-1, 3, -1, -1, -1, -1, -1, -1, 3, -1},
{2, 0, -1, 3, -1, 2, 3, -1, -1, -1},
{-1, -1, -1, 1, 1, 1, -1, -1, 3, 3},
{2, 3, -1, -1, 2, 2, 3, -1, -1, -1},
{-1, -1, -1, 1, 2, -1, 2, -1, 3, 3},
{-1, 2, -1, -1, -1, -1, -1, -1, 2, -1},
{-1, -1, 1, 1, -1, 2, -1, 1, -1, 3},
{3, 3, -1, 1, -1, 2, -1, -1, -1, 2}};
namespace operations_research {
namespace sat {
void PrintSolution(const std::vector<std::vector<int> >& data,
const std::vector<std::vector<bool> >& h_arcs,
const std::vector<std::vector<bool> >& v_arcs) {
const int num_rows = data.size();
const int num_columns = data[0].size();
for (int i = 0; i < num_rows; ++i) {
std::string first_line;
std::string second_line;
std::string third_line;
for (int j = 0; j < num_columns; ++j) {
const bool h_arc = h_arcs[i][j];
const bool v_arc = v_arcs[j][i];
const int sum = data[i][j];
first_line += h_arc ? " -----" : " ";
second_line += v_arc ? "|" : " ";
second_line +=
sum == -1 ? " " : absl::StrFormat(" %d ", sum).c_str();
third_line += v_arc ? "| " : " ";
}
const bool termination = v_arcs[num_columns][i];
second_line += termination == 1 ? "|" : " ";
third_line += termination == 1 ? "|" : " ";
std::cout << first_line << std::endl;
std::cout << third_line << std::endl;
std::cout << second_line << std::endl;
std::cout << third_line << std::endl;
}
std::string last_line;
for (int j = 0; j < num_columns; ++j) {
const bool h_arc = h_arcs[num_rows][j];
last_line += h_arc ? " -----" : " ";
}
std::cout << last_line << std::endl;
}
void SlitherLink(const std::vector<std::vector<int> >& data) {
const int num_rows = data.size();
const int num_columns = data[0].size();
const int num_nodes = (num_rows + 1) * (num_columns + 1);
const int num_horizontal_arcs = num_columns * (num_rows + 1);
const int num_vertical_arcs = (num_rows) * (num_columns + 1);
auto undirected_horizontal_arc = [=](int x, int y) {
CHECK_LT(x, num_columns);
CHECK_LT(y, num_rows + 1);
return x + (num_columns * y);
};
auto undirected_vertical_arc = [=](int x, int y) {
CHECK_LT(x, num_columns + 1);
CHECK_LT(y, num_rows);
return x + (num_columns + 1) * y;
};
auto node_index = [=](int x, int y) {
CHECK_LT(x, num_columns + 1);
CHECK_LT(y, num_rows + 1);
return x + y * (num_columns + 1);
};
CpModelBuilder builder;
std::vector<BoolVar> horizontal_arcs;
for (int arc = 0; arc < 2 * num_horizontal_arcs; ++arc) {
horizontal_arcs.push_back(builder.NewBoolVar());
}
std::vector<BoolVar> vertical_arcs;
for (int arc = 0; arc < 2 * num_vertical_arcs; ++arc) {
vertical_arcs.push_back(builder.NewBoolVar());
}
CircuitConstraint circuit = builder.AddCircuitConstraint();
// Horizontal arcs.
for (int x = 0; x < num_columns; ++x) {
for (int y = 0; y < num_rows + 1; ++y) {
const int arc = undirected_horizontal_arc(x, y);
circuit.AddArc(node_index(x, y), node_index(x + 1, y),
horizontal_arcs[2 * arc]);
circuit.AddArc(node_index(x + 1, y), node_index(x, y),
horizontal_arcs[2 * arc + 1]);
}
}
// Vertical arcs.
for (int x = 0; x < num_columns + 1; ++x) {
for (int y = 0; y < num_rows; ++y) {
const int arc = undirected_vertical_arc(x, y);
circuit.AddArc(node_index(x, y), node_index(x, y + 1),
vertical_arcs[2 * arc]);
circuit.AddArc(node_index(x, y + 1), node_index(x, y),
vertical_arcs[2 * arc + 1]);
}
}
// Self loops.
std::vector<BoolVar> self_nodes(num_nodes);
for (int x = 0; x < num_columns + 1; ++x) {
for (int y = 0; y < num_rows + 1; ++y) {
const int node = node_index(x, y);
const BoolVar self_node = builder.NewBoolVar();
circuit.AddArc(node, node, self_node);
self_nodes[node] = self_node;
}
}
for (int x = 0; x < num_columns; ++x) {
for (int y = 0; y < num_rows; ++y) {
if (data[y][x] == -1) continue;
std::vector<BoolVar> neighbors;
const int top_arc = undirected_horizontal_arc(x, y);
neighbors.push_back(horizontal_arcs[2 * top_arc]);
neighbors.push_back(horizontal_arcs[2 * top_arc + 1]);
const int bottom_arc = undirected_horizontal_arc(x, y + 1);
neighbors.push_back(horizontal_arcs[2 * bottom_arc]);
neighbors.push_back(horizontal_arcs[2 * bottom_arc + 1]);
const int left_arc = undirected_vertical_arc(x, y);
neighbors.push_back(vertical_arcs[2 * left_arc]);
neighbors.push_back(vertical_arcs[2 * left_arc + 1]);
const int right_arc = undirected_vertical_arc(x + 1, y);
neighbors.push_back(vertical_arcs[2 * right_arc]);
neighbors.push_back(vertical_arcs[2 * right_arc + 1]);
builder.AddEquality(LinearExpr::BooleanSum(neighbors), data[y][x]);
}
}
// Special rule on corners: value == 3 implies 2 corner arcs used.
if (data[0][0] == 3) {
const int h_arc = undirected_horizontal_arc(0, 0);
builder.AddBoolOr(
{horizontal_arcs[2 * h_arc], horizontal_arcs[2 * h_arc + 1]});
const int v_arc = undirected_vertical_arc(0, 0);
builder.AddBoolOr({vertical_arcs[2 * v_arc], vertical_arcs[2 * v_arc + 1]});
}
if (data[0][num_columns - 1] == 3) {
const int h_arc = undirected_horizontal_arc(num_columns - 1, 0);
builder.AddBoolOr(
{horizontal_arcs[2 * h_arc], horizontal_arcs[2 * h_arc + 1]});
const int v_arc = undirected_vertical_arc(num_columns, 0);
builder.AddBoolOr({vertical_arcs[2 * v_arc], vertical_arcs[2 * v_arc + 1]});
}
if (data[num_rows - 1][0] == 3) {
const int h_arc = undirected_horizontal_arc(0, num_rows);
builder.AddBoolOr(
{horizontal_arcs[2 * h_arc], horizontal_arcs[2 * h_arc + 1]});
const int v_arc = undirected_vertical_arc(0, num_rows - 1);
builder.AddBoolOr({vertical_arcs[2 * v_arc], vertical_arcs[2 * v_arc + 1]});
}
if (data[num_rows - 1][num_columns - 1] == 3) {
const int h_arc = undirected_horizontal_arc(num_columns - 1, num_rows);
builder.AddBoolOr(
{horizontal_arcs[2 * h_arc], horizontal_arcs[2 * h_arc + 1]});
const int v_arc = undirected_vertical_arc(num_columns, num_rows - 1);
builder.AddBoolOr({vertical_arcs[2 * v_arc], vertical_arcs[2 * v_arc + 1]});
}
// Topology rule: Border arcs are oriented in one direction.
for (int x = 0; x < num_columns; ++x) {
const int top_arc = undirected_horizontal_arc(x, 0);
builder.AddEquality(horizontal_arcs[2 * top_arc + 1], 0);
const int bottom_arc = undirected_horizontal_arc(x, num_rows);
builder.AddEquality(horizontal_arcs[2 * bottom_arc], 0);
}
for (int y = 0; y < num_rows; ++y) {
const int left_arc = undirected_vertical_arc(0, y);
builder.AddEquality(vertical_arcs[2 * left_arc], 0);
const int right_arc = undirected_vertical_arc(num_columns, y);
builder.AddEquality(vertical_arcs[2 * right_arc + 1], 0);
}
const CpSolverResponse response = Solve(builder.Build());
std::vector<std::vector<bool> > h_arcs(num_rows + 1);
for (int y = 0; y < num_rows + 1; ++y) {
for (int x = 0; x < num_columns; ++x) {
const int arc = undirected_horizontal_arc(x, y);
h_arcs[y].push_back(
SolutionBooleanValue(response, horizontal_arcs[2 * arc]) ||
SolutionBooleanValue(response, horizontal_arcs[2 * arc + 1]));
}
}
std::vector<std::vector<bool> > v_arcs(num_columns + 1);
for (int y = 0; y < num_rows; ++y) {
for (int x = 0; x < num_columns + 1; ++x) {
const int arc = undirected_vertical_arc(x, y);
v_arcs[x].push_back(
SolutionBooleanValue(response, vertical_arcs[2 * arc]) ||
SolutionBooleanValue(response, vertical_arcs[2 * arc + 1]));
}
}
PrintSolution(data, h_arcs, v_arcs);
LOG(INFO) << CpSolverResponseStats(response);
}
} // namespace sat
} // namespace operations_research
int main() {
std::cout << "Tiny problem" << std::endl;
operations_research::sat::SlitherLink(tiny);
std::cout << "Small problem" << std::endl;
operations_research::sat::SlitherLink(small);
std::cout << "Medium problem" << std::endl;
operations_research::sat::SlitherLink(medium);
std::cout << "Big problem" << std::endl;
operations_research::sat::SlitherLink(big);
return EXIT_SUCCESS;
}