forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mathutil.h
142 lines (128 loc) · 4.79 KB
/
mathutil.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
// Copyright 2010-2021 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef OR_TOOLS_BASE_MATHUTIL_H_
#define OR_TOOLS_BASE_MATHUTIL_H_
#include <math.h>
#include <algorithm>
#include <vector>
#include "absl/base/casts.h"
#include "ortools/base/basictypes.h"
#include "ortools/base/integral_types.h"
#include "ortools/base/logging.h"
#include "ortools/base/macros.h"
namespace operations_research {
class MathUtil {
public:
// CeilOfRatio<IntegralType>
// FloorOfRatio<IntegralType>
// Returns the ceil (resp. floor) of the ratio of two integers.
//
// IntegralType: any integral type, whether signed or not.
// numerator: any integer: positive, negative, or zero.
// denominator: a non-zero integer, positive or negative.
template <typename IntegralType>
static IntegralType CeilOfRatio(IntegralType numerator,
IntegralType denominator) {
DCHECK_NE(0, denominator);
const IntegralType rounded_toward_zero = numerator / denominator;
const IntegralType intermediate_product = rounded_toward_zero * denominator;
const bool needs_adjustment =
(rounded_toward_zero >= 0) &&
((denominator > 0 && numerator > intermediate_product) ||
(denominator < 0 && numerator < intermediate_product));
const IntegralType adjustment = static_cast<IntegralType>(needs_adjustment);
const IntegralType ceil_of_ratio = rounded_toward_zero + adjustment;
return ceil_of_ratio;
}
template <typename IntegralType>
static IntegralType FloorOfRatio(IntegralType numerator,
IntegralType denominator) {
DCHECK_NE(0, denominator);
const IntegralType rounded_toward_zero = numerator / denominator;
const IntegralType intermediate_product = rounded_toward_zero * denominator;
const bool needs_adjustment =
(rounded_toward_zero <= 0) &&
((denominator > 0 && numerator < intermediate_product) ||
(denominator < 0 && numerator > intermediate_product));
const IntegralType adjustment = static_cast<IntegralType>(needs_adjustment);
const IntegralType floor_of_ratio = rounded_toward_zero - adjustment;
return floor_of_ratio;
}
// Returns the greatest common divisor of two unsigned integers x and y.
static unsigned int GCD(unsigned int x, unsigned int y) {
while (y != 0) {
unsigned int r = x % y;
x = y;
y = r;
}
return x;
}
// Returns the least common multiple of two unsigned integers. Returns zero
// if either is zero.
static unsigned int LeastCommonMultiple(unsigned int a, unsigned int b) {
if (a > b) {
return (a / MathUtil::GCD(a, b)) * b;
} else if (a < b) {
return (b / MathUtil::GCD(b, a)) * a;
} else {
return a;
}
}
// Absolute value of x.
// Works correctly for unsigned types and
// for special floating point values.
// Note: 0.0 and -0.0 are not differentiated by Abs (Abs(0.0) is -0.0),
// which should be OK: see the comment for Max above.
template <typename T>
static T Abs(const T x) {
return x > 0 ? x : -x;
}
// Returns the square of x.
template <typename T>
static T Square(const T x) {
return x * x;
}
// Euclid's Algorithm.
// Returns: the greatest common divisor of two unsigned integers x and y.
static int64_t GCD64(int64_t x, int64_t y) {
DCHECK_GE(x, 0);
DCHECK_GE(y, 0);
while (y != 0) {
int64_t r = x % y;
x = y;
y = r;
}
return x;
}
template <typename T>
static T IPow(T base, int exp) {
return pow(base, exp);
}
template <class IntOut, class FloatIn>
static IntOut Round(FloatIn x) {
// We don't use sgn(x) below because there is no need to distinguish the
// (x == 0) case. Also note that there are specialized faster versions
// of this function for Intel, ARM and PPC processors at the bottom
// of this file.
if (x > -0.5 && x < 0.5) {
// This case is special, because for largest floating point number
// below 0.5, the addition of 0.5 yields 1 and this would lead
// to incorrect result.
return static_cast<IntOut>(0);
}
return static_cast<IntOut>(x < 0 ? (x - 0.5) : (x + 0.5));
}
static int64_t FastInt64Round(double x) { return Round<int64_t>(x); }
};
} // namespace operations_research
#endif // OR_TOOLS_BASE_MATHUTIL_H_