-
Notifications
You must be signed in to change notification settings - Fork 24
Python interface
The interface is available here.
- Create net
- Training net
- Architecture of net
- Save and load weight of layer
- Set and get params of layer
- Monitoring gradients and weights
Operators
- Input
- Output
- FullyConnected
- Convolution
- Deconvolution
- Pooling
- LossFunction
- Switch
- Lock
- Summator
- Crop
- Concat
- Resize
- Activation
- BatchNorm
- UserLayer
Examples of use
Creating a Network Architecture
class Net():
"""Net object."""
_net = 0
_nodes = []
_errCBack = 0
_userCBack = {}
def __init__(self, jnNet : str = '', weightPath : str = ''):
"""
init
:param jnNet: architec of net json
:param weightPath: weight file path
"""
if (len(jnNet) > 0):
self._createNetJn(jnNet)
if (self._net and (len(weightPath) > 0)):
self.loadAllWeightFromFile(weightPath)
Example:
# create net
net = snNet.Net()
net.addNode('In', snOperator.Input(), 'C1') \
.addNode('C1', snOperator.Convolution(15), 'C2') \
.addNode('C2', snOperator.Convolution(25), 'P1') \
.addNode('P1', snOperator.Pooling(), 'F1') \
.addNode('F1', snOperator.FullyConnected(256), 'UCB') \
.addNode('UCB', snOperator.UserLayer('myLayer'), 'F2') \
.addNode('F2', snOperator.FullyConnected(10), 'LS') \
.addNode('LS', snOperator.LossFunction(snType.lossType.softMaxToCrossEntropy), 'Output')
You can train a network in two ways:
- by calling one function 'snTraining'
- and by the standard way: forwarding the function 'snForward', calculating your own error, passing back the function 'snBackward'.
Let's see the first option.
def training(self, lr: float, inTns: numpy.ndarray, outTns: numpy.ndarray,
trgTns: numpy.ndarray, outAccurate : []) -> bool:
"""
Training net - cycle fwd<->bwd with calc error
:param lr: lerning rate
:param inTns: in tensor NCHW(bsz, ch, h, w)
:param outTns: out tensor NCHW(bsz, ch, h, w)
:param trgTns: target tensor
:param outAccurate: accurate
:return: True ok
"""
Example:
# cycle lern
accuratSumm = 0.;
for n in range(1000):
targLayer[...] = 0
for i in range(bsz):
ndir = random.randint(0, 10 - 1)
nimg = random.randint(0, len(imgList[ndir]) - 1)
inLayer[i][0] = imageio.imread(pathImg + str(ndir) + '/' + imgList[ndir][nimg])
targLayer[i][0][0][ndir] = 1.
acc = [0]
net.training(0.001, inLayer, outLayer, targLayer, acc)
accuratSumm += acc[0]
print(n, "accurate", accuratSumm / (n + 1))
The function takes a batch of input data and the target result.
Returns the result and the evaluation by a batch.
Accurate is calculated as:
snFloat* targetData = targetTens->getData();
snFloat* outData = outTens->getData();
size_t accCnt = 0, osz = outTens->size().size();
for (size_t i = 0; i < osz; ++i){
if (abs(outData[i] - targetData[i]) < 0.1)
++accCnt;
}
return (accCnt * 1.F) / osz;
Getting network structure in Json.
def getGetArchitecNet(self) -> str:
"""
architecture of net
:return: arch in json. '' - error
"""
def setWeightNode(self, nodeName: str, weight: numpy.ndarray) -> bool:
"""
set weight of node ('channels first' [bsz,ch,h,w])
:param nodeName: node name
:param weight: set array weight NCHW(bsz, ch, h, w)
:return: True ok
"""
def getWeightNode(self, nodeName: str, weight: [numpy.ndarray]) -> bool:
"""
get Weight of Node ('channels first' [bsz,ch,h,w])
:param nodeName: node name
:param weight: out array weight NCHW(bsz, ch, h, w) as list[0]
:return: True ok
"""
def loadAllWeightFromFile(self, weightPath : str) -> bool:
"""
load All Weight From File
:param weightPath: weight Path file
:return: True ok
"""
def saveAllWeightToFile(self, weightPath: str) -> bool:
"""
save All Weight to File
:param weightPath: weight Path file
:return: True ok
"""
def addNode(self, name : str, nd : snOperator, nextNodes : str):
"""
add Node
:param name: name node
:param nd: tensor node
:param nextNodes: next nodes through a space
:return: True ok
"""
def updateNode(self, name : str, nd : snOperator) -> bool:
"""
Update params node
:param name: name node
:param nd: tensor node
:return: True ok
"""
def getOutputNode(self, nodeName: str, output: [numpy.ndarray]) -> bool:
"""
get Output of Node
:param nodeName: node name
:param output: out array NCHW(bsz, ch, h, w) as list[0]
:return: True ok
"""
You can specify your own callback function, and insert your 'UserLayer' node after the node of interest.
def addUserCallBack(self, ucbName: str, ucb) -> bool:
"""
User callback for 'UserCBack' layer and 'LossFunction' layer
:param ucbName: cback name
:param ucb: cback function
:return: True ok
ucb = function(None,
str, # name user cback
str, # name node
bool, # current action forward(true) or backward(false)
inLayer: ndarray, # input layer - receive from prev node
outLayer: [ndarray], # output layer - send to next node
)
"""
Example:
def myLayer(ucbName: str, # name user cback
nodeName: str, # name node
isFwdBwd: bool, # current action forward(true) or backward(false)
inLayer: np.ndarray, # input layer - receive from prev node
outLayer: [np.ndarray]): # output layer - send to next node
pass
# create net
net = snNet.Net()
net.addNode('In', snOperator.Input(), 'C1') \
.addNode('C1', snOperator.Convolution(15), 'C2') \
.addNode('C2', snOperator.Convolution(25), 'P1') \
.addNode('P1', snOperator.Pooling(), 'F1') \
.addNode('F1', snOperator.FullyConnected(256), 'UCB') \
.addNode('UCB', snOperator.UserLayer('myLayer'), 'F2') \
.addNode('F2', snOperator.FullyConnected(10), 'LS') \
.addNode('LS', snOperator.LossFunction(snType.lossType.softMaxToCrossEntropy), 'Output')
# user cback
net.addUserCallBack('myLayer', myLayer)
The input node receives the user data, and transmits further along the chain.
net = snNet.Net()
net.addNode('In', snOperator.Input(), 'C1') \
....
The interface is not implemented as unnecessary.
For the last node, the next one is set as "Output".
Example:
net = snNet.Net()
net.addNode('In', snOperator.Input(), 'C1') \
.addNode('C1', snOperator.Convolution(15), 'C2') \
.
.
.addNode('LS', snOperator.LossFunction(snType.lossType.softMaxToCrossEntropy), 'Output')
class FullyConnected():
'''Fully connected layer'''
_params = {
'units' : '0', # Number of out neurons. !Required parameter [0..)
'active' : active.relu.value, # Activation function type. Optional parameter
'optimizer' : optimizer.adam.value, # Optimizer of weights. Optional parameter
'dropOut' : '0', # Random disconnection of neurons. Optional parameter [0..1.F]
'batchNorm' : batchNormType.none.value, # Type of batch norm. Optional parameter
'gpuDeviceId' : '0', # GPU Id. Optional parameter
'freeze' :'0', # Do not change weights. Optional parameter
'useBias' :'1', # +bias. Optional parameter
'weightInit' : weightInit.he.value, # Type of initialization of weights. Optional parameter
'decayMomentDW' : '0.9', # Optimizer of weights moment change. Optional parameter [0..1.F]
'decayMomentWGr' : '0.99', # Optimizer of weights moment change of prev. Optional parameter
'lmbRegular' : '0.001', # Optimizer of weights l2Norm. Optional parameter [0..1.F]
'batchNormLr' : '0.001' # Learning rate for batch norm coef. Optional parameter [0..)
}
def __init__(self,
units,
act=active.relu,
....
}
The default parameters are specified.
class Convolution():
'''Convolution layer'''
_params = {
'filters' : '0', # Number of output layers. !Required parameter [0..)
'fWidth': '3', # Width of mask. Optional parameter(> 0)
'fHeight': '3', # Height of mask. Optional parameter(> 0)
'padding': '0', # Padding around the edges. Optional parameter
'stride':'1', # Mask movement step. Optional parameter(> 0)
'dilate': '1', # Expansion mask. Optional parameter(> 0)
'active' : active.relu.value, # Activation function type. Optional parameter
'optimizer' : optimizer.adam.value, # Optimizer of weights. Optional parameter
'dropOut' : '0', # Random disconnection of neurons. Optional parameter [0..1.F]
'batchNorm' : batchNormType.none.value, # Type of batch norm. Optional parameter
'gpuDeviceId' : '0', # GPU Id. Optional parameter
'freeze' :'0', # Do not change weights. Optional parameter
'useBias' :'1', # +bias. Optional parameter
'weightInit' : weightInit.he.value, # Type of initialization of weights. Optional parameter
'decayMomentDW' : '0.9', # Optimizer of weights moment change. Optional parameter [0..1.F]
'decayMomentWGr' : '0.99', # Optimizer of weights moment change of prev. Optional parameter
'lmbRegular' : '0.001', # Optimizer of weights l2Norm. Optional parameter [0..1.F]
'batchNormLr' : '0.001' # Learning rate for batch norm coef. Optional parameter [0..)
}
def __init__(self,
filters,
act=active.relu,
....
The default parameters are specified.
class Deconvolution():
'''Deconvolution layer'''
_params = {
'filters': '0', # Number of output layers. !Required parameter [0..)
'fWidth': '3', # Width of mask. Optional parameter(> 0)
'fHeight': '3', # Height of mask. Optional parameter(> 0)
'stride': '2', # Mask movement step. Optional parameter(> 0)
'active': active.relu.value, # Activation function type. Optional parameter
'optimizer': optimizer.adam.value, # Optimizer of weights. Optional parameter
'dropOut': '0', # Random disconnection of neurons. Optional parameter [0..1.F]
'batchNorm': batchNormType.none.value, # Type of batch norm. Optional parameter
'gpuDeviceId': '0', # GPU Id. Optional parameter
'freeze': '0', # Do not change weights. Optional parameter
'weightInit': weightInit.he.value, # Type of initialization of weights. Optional parameter
'decayMomentDW': '0.9', # Optimizer of weights moment change. Optional parameter [0..1.F]
'decayMomentWGr': '0.99', # Optimizer of weights moment change of prev. Optional parameter
'lmbRegular': '0.001', # Optimizer of weights l2Norm. Optional parameter [0..1.F]
'batchNormLr': '0.001' # Learning rate for batch norm coef. Optional parameter [0..)
}
def __init__(self,
filters,
act=active.relu,
.....
The default parameters are specified.
class Pooling():
'''Pooling layer'''
_params = {
'kernel': '2', # Square Mask Size. Optional parameter (> 0)
'stride': '2', # Mask movement step. Optional parameter(> 0)
'pool': poolType.max.value, # Operator Type. Optional parameter
'gpuDeviceId': '0', # GPU Id. Optional parameter
}
def __init__(self,
kernel = 2,
....
The default parameters are specified.
If the mask does not completely enter the image, the image automatically extends around the edges.
Operator for automatic error calculation.
Depending on the network task being solved, supports the following types of errors:
- "softMaxACrossEntropy" - for multiclass classification
- "binaryCrossEntropy" - for binary classification
- "regressionMSE" - regression of a function with least-squares estimation
- "userLoss" - user operator
class LossFunction():
'''Error function calculation layer'''
_params = {
'loss': lossType.softMaxToCrossEntropy.value,
'cbackName': '' # for user cback
}
Operator for transferring data to several nodes at once.
In the process, you can change the way out - function net.updateNode().
Data can only be received from one node.
class Switch():
_params = {
'nextWay':'' # next nodes through a space
}
def __init__(self, nextWay : str):
self._params['nextWay'] = nextWay
Example:
# create net
net = snNet.Net()
net.addNode('In', snOperator.Input(), 'SW') \
.addNode('SW', snOperator.Switch(), 'FC1 FC2') \
.addNode('FC1', snOperator.FullyConnected(256), 'Sum') \
.addNode('FC2', snOperator.FullyConnected(256), 'Sum') \
.addNode('Sum', snOperator.Summator(), 'LS') \
.addNode('LS', snOperator.LossFunction(snType.lossType.softMaxToCrossEntropy), 'Output')
Operator to block further calculation at the current location.
In the process, you can change the way out - function net.updateNode().
It is designed for the ability to dynamically disconnect the parallel branches of the network during operation.
class Lock():
_params = {
'state':lockType.unlock.value # Blocking activity. Optional parameter
}
def __init__(self, lock):
self._params['state'] = lock.value
Example:
# create net
net = snNet.Net()
net.addNode('In', snOperator.Input(), 'SW') \
.addNode('SW', snOperator.Switch(), 'FC1 FC2') \
.addNode('FC1', snOperator.FullyConnected(256), 'Sum') \
.addNode('LC', snOperator.Lock(snType.lockType.unlock), 'Sum') \
.addNode('FC2', snOperator.FullyConnected(256), 'Sum') \
.addNode('Sum', snOperator.Summator(), 'LS') \
.addNode('LS', snOperator.LossFunction(snType.lossType.softMaxToCrossEntropy), 'Output')
The operator is designed to combine the values of two layers.
The consolidation can be performed by the following options: "summ", "diff", "mean".
The dimensions of the input layers must be the same.
class Summator():
_params = {
'type': summatorType.summ.value
}
def __init__(self, type : summatorType):
self._params['type'] = type.value
Example:
# create net
net = snNet.Net()
net.addNode('In', snOperator.Input(), 'SW') \
.addNode('SW', snOperator.Switch(), 'FC1 FC2') \
.addNode('FC1', snOperator.FullyConnected(256), 'Sum') \
.addNode('LC', snOperator.Lock(snType.lockType.unlock), 'Sum') \
.addNode('FC2', snOperator.FullyConnected(256), 'Sum') \
.addNode('Sum', snOperator.Summator(), 'LS') \
.addNode('LS', snOperator.LossFunction(snType.lossType.softMaxToCrossEntropy), 'Output')
ROI clipping in each image of each channel.
class Crop():
_params = {
'roi': '0 0 0 0' # region of interest
}
def __init__(self, rct: rect):
self._params['roi'] = rct.value()
The operator connects the channels with multiple layers.
class Concat():
_params = {
'sequence': '' # prev nodes through a space
}
def __init__(self, sequence: str):
self._params['sequence'] = sequence
Example:
# create net
net = snNet.Net()
net.addNode('In', snOperator.Input(), 'C1 C2') \
.addNode('C1', snOperator.Convolution(20), 'R1') \
.addNode('R1', snOperator.Resize(snType.diap(0, 20), snType.diap(0, 20)), 'Conc') \
.addNode('C2', snOperator.Convolution(20), 'R2') \
.addNode('R2', snOperator.Resize(snType.diap(0, 20), snType.diap(20, 40)), 'Conc') \
.addNode('Conc', snOperator.Concat('R1 R2'), 'LS') \
.addNode('LS', snOperator.LossFunction(snType.lossType.softMaxToCrossEntropy), 'Output')
Change the number of channels.
Works in conjunction with "Concat".
class Resize():
_params = {
'fwdDiap': '0 0', # diap layer through a space
'bwdDiap': '0 0'
}
def __init__(self, fwdDiap: diap, bwdDiap: diap):
self._params['fwdDiap'] = fwdDiap.value()
self._params['bwdDiap'] = bwdDiap.value()
Example:
# create net
net = snNet.Net()
net.addNode('In', snOperator.Input(), 'C1 C2')
.addNode('C1', snOperator.Convolution(20), 'R1')
.addNode('R1', snOperator.Resize(snType.diap(0 20), snType.diap(0 20), 'Conc')
.addNode('C2', snOperator.Convolution(20), 'R2')
.addNode('R2', snOperator.Resize(snType.diap(0 20), snType.diap(20 40)), 'Conc')
.addNode('Conc', snOperator.Concat('R1 R2'), 'LS')
.addNode('LS', snOperator.LossFunction(snType.lossType.softMaxToCrossEntropy), 'Output');
Activation function operator.
class Activation():
'''
The operator is activation function type.
'''
_params = {
'active': active.relu.value
}
def __init__(self, act=active.relu):
self._params['active'] = act.value
class BatchNormLayer():
'''
Batch norm
'''
_params = {
'bnType': batchNormType.byChannels.value, # Type of batch norm. Optional parameter
}
Custom layer.
CallBack is set by the user, the 'net.addUserCBack' function
class UserLayer():
_params = {
'cbackName': ''
}
def __init__(self, cbackName: str):
self._params['cbackName'] = cbackName
Example:
def myLayer(ucbName: str, # name user cback
nodeName: str, # name node
isFwdBwd: bool, # current action forward(true) or backward(false)
inLayer: np.ndarray, # input layer - receive from prev node
outLayer: np.ndarray): # output layer - send to next node
pass
# create net
net = snNet.Net()
net.addNode('In', snOperator.Input(), 'C1') \
.addNode('C1', snOperator.Convolution(15), 'C2') \
.addNode('C2', snOperator.Convolution(25), 'P1') \
.addNode('P1', snOperator.Pooling(), 'F1') \
.addNode('F1', snOperator.FullyConnected(256), 'UCB') \
.addNode('UCB', snOperator.UserLayer('myLayer'), 'F2') \
.addNode('F2', snOperator.FullyConnected(10), 'LS') \
.addNode('LS', snOperator.LossFunction(snType.lossType.softMaxToCrossEntropy), 'Output')
# user cback
net.addUserCallBack('myLayer', myLayer)
import os
from libsunnet import*
import numpy as np
import imageio
import random
import ctypes
import datetime
# create net
net = snNet.Net()
net.addNode('In', snOperator.Input(), 'C1') \
.addNode('C1', snOperator.Convolution(15, (3, 3)), 'C2') \
.addNode('C2', snOperator.Convolution(25, (3, 3)), 'P1') \
.addNode('P1', snOperator.Pooling(snType.poolType.max), 'F1') \
.addNode('F1', snOperator.FullyConnected(256), 'F2') \
.addNode('F2', snOperator.FullyConnected(10), 'LS') \
.addNode('LS', snOperator.LossFunction(snType.lossType.softMaxToCrossEntropy), 'Output')
# load of weight
#if (net.loadAllWeightFromFile('c:/cpp/w.dat')):
# print('weight is load')
#else:
# print('error load weight')
# loadImg
imgList = []
pathImg = 'c:\\cpp\\other\\sunnet\\example\\mnist\\images\\'
for i in range(10):
imgList.append(os.listdir(pathImg + str(i)))
bsz = 100
lr = 0.001
accuratSumm = 0.
inLayer = np.zeros((bsz, 1, 28, 28), ctypes.c_float)
outLayer = np.zeros((bsz, 1, 1, 10), ctypes.c_float)
targLayer = np.zeros((bsz, 1, 1, 10), ctypes.c_float)
imgMem = {}
# cycle lern
for n in range(1000):
targLayer[...] = 0
for i in range(bsz):
ndir = random.randint(0, 10 - 1)
nimg = random.randint(0, len(imgList[ndir]) - 1)
nm = pathImg + str(ndir) + '/' + imgList[ndir][nimg]
if (nm in imgMem):
inLayer[i][0] = imgMem[nm]
else:
inLayer[i][0] = imageio.imread(nm)
imgMem[nm] = inLayer[i][0].copy()
targLayer[i][0][0][ndir] = 1.
acc = [0] # do not use default accurate
net.training(lr, inLayer, outLayer, targLayer, acc)
# calc accurate
acc[0] = 0
for i in range(bsz):
if (np.argmax(outLayer[i][0][0]) == np.argmax(targLayer[i][0][0])):
acc[0] += 1
accuratSumm += acc[0]/bsz
print(datetime.datetime.now().strftime('%H:%M:%S'), n, "accurate", accuratSumm / (n + 1))
# save weight
if (net.saveAllWeightToFile('c:/cpp/w.dat')):
print('weight is save')
else:
print('error save weight')
import os
from libsunnet import*
import numpy as np
import imageio
import random
import ctypes
import datetime
# create net
net = snNet.Net()
net.addNode('In', snOperator.Input(), 'C1') \
.addNode('C1', snOperator.Convolution(15, (3, 3), -1, 1, snType.batchNormType.beforeActive), 'C2') \
.addNode('C2', snOperator.Convolution(15, (3, 3), 0, 1, snType.batchNormType.beforeActive), 'P1') \
.addNode('P1', snOperator.Pooling(snType.poolType.max), 'C3') \
.addNode('C3', snOperator.Convolution(25, (3, 3), -1, 1, snType.batchNormType.beforeActive), 'C4') \
.addNode('C4', snOperator.Convolution(25, (3, 3), 0, 1, snType.batchNormType.beforeActive), 'P2') \
.addNode('P2', snOperator.Pooling(snType.poolType.max), 'C5') \
.addNode('C5', snOperator.Convolution(40, (3, 3), -1, 1, snType.batchNormType.beforeActive), 'C6') \
.addNode('C6', snOperator.Convolution(40, (3, 3), 0, 1, snType.batchNormType.beforeActive), 'P3') \
.addNode('P3', snOperator.Pooling(snType.poolType.max), 'F1') \
.addNode('F1', snOperator.FullyConnected(2048), 'F2') \
.addNode('F2', snOperator.FullyConnected(128), 'F3') \
.addNode('F3', snOperator.FullyConnected(10), 'LS') \
.addNode('LS', snOperator.LossFunction(snType.lossType.softMaxToCrossEntropy), 'Output')
# loadImg
imgList = []
pathImg = 'c:/cpp/other/sunnet/example/cifar10/images/'
for i in range(10):
imgList.append(os.listdir(pathImg + str(i)))
bsz = 100
lr = 0.0001
accuratSumm = 0.
inLayer = np.zeros((bsz, 3, 32, 32), ctypes.c_float)
outLayer = np.zeros((bsz, 1, 1, 10), ctypes.c_float)
targLayer = np.zeros((bsz, 1, 1, 10), ctypes.c_float)
# cycle lern
for n in range(1000):
targLayer[...] = 0
for i in range(bsz):
ndir = random.randint(0, 10 - 1)
nimg = random.randint(0, len(imgList[ndir]) - 1)
inLayer[i] = imageio.imread(pathImg + str(ndir) + '/' + imgList[ndir][nimg]).reshape(3,32,32)
targLayer[i][0][0][ndir] = 1.
acc = [0] # do not use default accurate
net.training(lr, inLayer, outLayer, targLayer, acc)
# calc accurate
acc[0] = 0
for i in range(bsz):
if (np.argmax(outLayer[i][0][0]) == np.argmax(targLayer[i][0][0])):
acc[0] += 1
accuratSumm += acc[0]/bsz
print(datetime.datetime.now().strftime('%H:%M:%S'), n, "accurate", accuratSumm / (n + 1))
import os
from libsunnet import*
import numpy as np
import imageio
import random
import ctypes
import datetime
# create net
net = snNet.Net()
net.addNode("In", snOperator.Input(), "C1") \
.addNode("C1", snOperator.Convolution(10, (3, 3), -1), "C2") \
.addNode("C2",snOperator.Convolution(10,(3, 3), 0), "P1 Crop1") \
.addNode("Crop1", snOperator.Crop(snType.rect(0, 0, 487, 487)), "Rsz1") \
.addNode("Rsz1", snOperator.Resize(snType.diap(0, 10), snType.diap(0, 10)), "Conc1") \
.addNode("P1", snOperator.Pooling(), "C3") \
\
.addNode("C3", snOperator.Convolution(10,(3, 3), -1), "C4") \
.addNode("C4", snOperator.Convolution(10,(3, 3), 0), "P2 Crop2") \
.addNode("Crop2", snOperator.Crop(snType.rect(0, 0, 247, 247)), "Rsz2") \
.addNode("Rsz2", snOperator.Resize(snType.diap(0, 10), snType.diap(0, 10)), "Conc2") \
.addNode("P2", snOperator.Pooling(), "C5") \
\
.addNode("C5", snOperator.Convolution(10,(3, 3), 0), "C6") \
.addNode("C6", snOperator.Convolution(10,(3, 3), 0), "DC1") \
.addNode("DC1", snOperator.Deconvolution(10), "Rsz3") \
.addNode("Rsz3", snOperator.Resize(snType.diap(0, 10), snType.diap(10, 20)), "Conc2") \
\
.addNode("Conc2", snOperator.Concat("Rsz2 Rsz3"), "C7") \
\
.addNode("C7", snOperator.Convolution(10,(3, 3), 0), "C8") \
.addNode("C8", snOperator.Convolution(10,(3, 3), 0), "DC2") \
.addNode("DC2", snOperator.Deconvolution(10), "Rsz4") \
.addNode("Rsz4", snOperator.Resize(snType.diap(0, 10), snType.diap(10, 20)), "Conc1") \
\
.addNode("Conc1", snOperator.Concat("Rsz1 Rsz4"), "C9") \
\
.addNode("C9", snOperator.Convolution(10,(3, 3), 0), "C10")
convOut = snOperator.Convolution(1, (3, 3), 0)
convOut.act = snType.active.sigmoid;
net.addNode("C10", convOut, "LS") \
.addNode('LS', snOperator.LossFunction(snType.lossType.binaryCrossEntropy), 'Output')
# loadImg
pathImg = 'c:/cpp/other/sunnet/example/unet/images/'
imgList = os.listdir(pathImg)
pathLabel= 'c:/cpp/other/sunnet/example/unet/labels/'
labelsList = os.listdir(pathLabel)
bsz = 5
lr = 0.001
accuratSumm = 0.
inLayer = np.zeros((bsz, 1, 512, 512), ctypes.c_float)
outLayer = np.zeros((bsz, 1, 483, 483), ctypes.c_float)
targLayer = np.zeros((bsz, 1, 483, 483), ctypes.c_float)
# cycle lern
for n in range(1000):
targLayer[...] = 0
for i in range(bsz):
nimg = random.randint(0, len(imgList) - 1)
inLayer[i] = imageio.imread(pathImg + imgList[nimg])
targLayer[i] = np.resize(imageio.imread(pathLabel + labelsList[nimg]), (1, 483, 483)) / 255.
acc = [0] # do not use default accurate
net.training(lr, inLayer, outLayer, targLayer, acc)
accuratSumm += acc[0]
print(datetime.datetime.now().strftime('%H:%M:%S'), n, "accurate", accuratSumm / (n + 1))
from libsunnet import*
import numpy as np
from keras.preprocessing import image
from keras.applications.resnet50 import preprocess_input
### Create net
net = snResNet50.createNet()
### Set weight
weightTF = snWeight.getResNet50Weights()
if (not snResNet50.setWeights(net, weightTF)):
print('Error setWeights')
exit(-1)
#################################
img_path = 'c:\\cpp\\other\\sunnet\\example\\resnet50\\images\\elephant.jpg'
img = image.load_img(img_path, target_size=(224, 224))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x) # (224,224,3)
x = np.moveaxis(x, -1, 1)
outAr = np.zeros((1, 1, 1, 1000), ctypes.c_float)
import time
for i in range(100):
ct = time.time()
net.forward(False, x.copy(), outAr)
print(time.time() - ct)
mx = np.argmax(outAr[0])
# for check: c:\cpp\other\sunnet\example\resnet50\imagenet_class_index.json
print('Predicted:', mx, 'val', outAr[0][0][0][mx])
import os
from libsunnet import*
import numpy as np
import imageio
import random
import ctypes
import datetime
# create net
net = snNet.Net()
net.addNode('In', snOperator.Input(), 'FC1') \
.addNode('FC1', snOperator.FullyConnected(256), 'FC2') \
.addNode('FC2', snOperator.FullyConnected(128), 'FC3') \
.addNode('FC3', snOperator.FullyConnected(32), 'FC4') \
.addNode('FC4', snOperator.FullyConnected(128), 'FC5') \
.addNode('FC5', snOperator.FullyConnected(256), 'FC6') \
.addNode('FC6', snOperator.FullyConnected(784), 'LS') \
.addNode('LS', snOperator.LossFunction(snType.lossType.binaryCrossEntropy), 'Output')
# load of weight
#if (net.loadAllWeightFromFile('c:/cpp/w.dat')):
# print('weight is load')
#else:
# print('error load weight')
# loadImg
imgList = []
pathImg = 'c:\\cpp\\sunnet\\example\\autoEncoder\\images\\'
for i in range(10):
imgList.append(os.listdir(pathImg + str(i)))
bsz = 100
lr = 0.001
accuratSumm = 0.
inLayer = np.zeros((bsz, 1, 28, 28), ctypes.c_float)
outLayer = np.zeros((bsz, 1, 1, 28 * 28), ctypes.c_float)
imgMem = {}
# cycle lern
for n in range(1000):
for i in range(bsz):
ndir = random.randint(0, 10 - 1)
nimg = random.randint(0, len(imgList[ndir]) - 1)
nm = pathImg + str(ndir) + '/' + imgList[ndir][nimg]
if (nm in imgMem):
inLayer[i][0] = imgMem[nm]
else:
inLayer[i][0] = imageio.imread(nm)
imgMem[nm] = inLayer[i][0].copy()
acc = [0]
net.training(lr, inLayer, outLayer, inLayer, acc)
accuratSumm += acc[0]/bsz
print(datetime.datetime.now().strftime('%H:%M:%S'), n, "accurate", accuratSumm / (n + 1))
# save weight
if (net.saveAllWeightToFile('c:/cpp/w.dat')):
print('weight is save')
else:
print('error save weight')