diff --git a/.nojekyll b/.nojekyll
index ba06d78..5ee9f29 100644
--- a/.nojekyll
+++ b/.nojekyll
@@ -1 +1 @@
-e975d186
\ No newline at end of file
+8073b4b0
\ No newline at end of file
diff --git a/schedule/slides/18-the-bootstrap.html b/schedule/slides/18-the-bootstrap.html
index 30c69b2..e2eede3 100644
--- a/schedule/slides/18-the-bootstrap.html
+++ b/schedule/slides/18-the-bootstrap.html
@@ -398,7 +398,7 @@
The Fundamental Premise (TM): a sufficiently large sample looks like the population.
+
So, sampling from the sample looks like sampling from the population.
+
+
+
Population:
+
+
+
+
+
+
+
+
Medians for samples of size \(N=100\):
+
+
+
[1] 3.055229
+
+
+
[1] 4.155205
+
+
+
[1] 3.346588
+
+
+
+
+
One Sample ( \(N = 100\) ):
+
+
+
+
+
+
+
+
Medians for samples of size \(N=100\):
+
+
+
[1] 3.126391
+
+
+
[1] 3.063069
+
+
+
[1] 3.534019
+
+
+
+
+
+
+
+
+
+
Bootstrap error sources
+
+
+
Simulation error
+
+using only \(B\) samples to estimate \(F\) with \(\hat{F}\).
+
+
Statistical error
+
+our data depended on a sample from the population. We don’t have the whole population so we make an error by using a sample (Note: this part is what always happens with data, and what the science of statistics analyzes.)
+
+
Specification error
+
+If we use the parametric bootstrap, and our model is wrong, then we are overconfident.
+
+
+
+
+
Types of intervals
+
Let \(\hat{\theta}\) be our sample statistic, \(\hat\theta^{(b)}\) be the resamples
cats.lm <-lm(Hwt ~0+ Bwt, data = fatcats)
-summary(cats.lm)
+
cats.lm <-lm(Hwt ~0+ Bwt, data = fatcats)
+summary(cats.lm)
Call:
lm(formula = Hwt ~ 0 + Bwt, data = fatcats)
Residuals:
- Min 1Q Median 3Q Max
--11.2353 -0.7932 -0.1407 0.5968 11.1026
+ Min 1Q Median 3Q Max
+-9.8138 -0.9014 -0.2155 0.7548 22.5957
Coefficients:
Estimate Std. Error t value Pr(>|t|)
-Bwt 3.95424 0.06294 62.83 <2e-16 ***
+Bwt 3.88297 0.08401 46.22 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
-Residual standard error: 2.089 on 143 degrees of freedom
-Multiple R-squared: 0.965, Adjusted R-squared: 0.9648
-F-statistic: 3947 on 1 and 143 DF, p-value: < 2.2e-16
+Residual standard error: 2.789 on 143 degrees of freedom
+Multiple R-squared: 0.9373, Adjusted R-squared: 0.9368
+F-statistic: 2136 on 1 and 143 DF, p-value: < 2.2e-16
-
confint(cats.lm)
+
confint(cats.lm)
2.5 % 97.5 %
-Bwt 3.829836 4.078652
+Bwt 3.716912 4.049036
@@ -651,39 +772,39 @@
When we fit models, we examine diagnostics
-
qqnorm(residuals(cats.lm), pch =16, col = blue)
-qqline(residuals(cats.lm), col = orange, lwd =2)
+
qqnorm(residuals(cats.lm), pch =16, col = blue)
+qqline(residuals(cats.lm), col = orange, lwd =2)
-
The tails are too fat. So I don’t believe that CI…