diff --git a/.nojekyll b/.nojekyll
index 33bbd3b..fec702f 100644
--- a/.nojekyll
+++ b/.nojekyll
@@ -1 +1 @@
-38a419c5
\ No newline at end of file
+50e3d627
\ No newline at end of file
diff --git a/schedule/index.html b/schedule/index.html
index 4d3cc72..922d2fa 100644
--- a/schedule/index.html
+++ b/schedule/index.html
@@ -512,20 +512,14 @@
5 Unsupervised learn
F Final exam
-Date and time TBD.
-
-
-
-
Do not make any plans to leave Vancouver before the final exam date is announced.
-
-
+Monday, December 18 at 12-2pm, location TBA
+
- In person attendance is required (per Faculty of Science guidelines)
- You must bring your computer as the exam will be given through Canvas
diff --git a/schedule/slides/00-gradient-descent.html b/schedule/slides/00-gradient-descent.html
index 77e46e6..99b570b 100644
--- a/schedule/slides/00-gradient-descent.html
+++ b/schedule/slides/00-gradient-descent.html
@@ -397,7 +397,7 @@
00 Gradient descent
Stat 406
Daniel J. McDonald
-Last modified – 16 October 2023
+Last modified – 25 October 2023
\[
\DeclareMathOperator*{\argmin}{argmin}
\DeclareMathOperator*{\argmax}{argmax}
@@ -471,7 +471,7 @@ Very basic example
Why does this work?
-Heuristic interpretation:
+Heuristic interpretation:
Decay on a schedule
-\(\gamma_{k+1} = \frac{\gamma_k}{1+ck}\) or \(\gamma_{k} = \gamma_0 b^k\)
+\(\gamma_{n+1} = \frac{\gamma_n}{1+cn}\) or \(\gamma_{n} = \gamma_0 b^n\)
Exact line search
- Tells you exactly how far to go.
-- At each \(k\), solve \(\gamma_k = \arg\min_{s \geq 0} f( x^{(k)} - s f(x^{(k-1)}))\)
+- At each iteration \(n\), solve \(\gamma_n = \arg\min_{s \geq 0} f( x^{(n)} - s f(x^{(n-1)}))\)
- Usually can’t solve this.
diff --git a/schedule/slides/16-logistic-regression.html b/schedule/slides/16-logistic-regression.html
index b79b38e..178de4a 100644
--- a/schedule/slides/16-logistic-regression.html
+++ b/schedule/slides/16-logistic-regression.html
@@ -397,7 +397,7 @@
16 Logistic regression
Stat 406
Daniel J. McDonald
-Last modified – 09 October 2023
+Last modified – 25 October 2023
\[
\DeclareMathOperator*{\argmin}{argmin}
\DeclareMathOperator*{\argmax}{argmax}
@@ -446,7 +446,7 @@ Direct model
\[
\begin{aligned}
Pr(Y = 1 \given X=x) & = \frac{\exp\{\beta_0 + \beta^{\top}x\}}{1 + \exp\{\beta_0 + \beta^{\top}x\}} \\
-\P(Y = 0 | X=x) & = \frac{1}{1 + \exp\{\beta_0 + \beta^{\top}x\}}=1-\frac{\exp\{\beta_0 + \beta^{\top}x\}}{1 + \exp\{\beta_0 + \beta^{\top}x\}}
+Pr(Y = 0 | X=x) & = \frac{1}{1 + \exp\{\beta_0 + \beta^{\top}x\}}=1-\frac{\exp\{\beta_0 + \beta^{\top}x\}}{1 + \exp\{\beta_0 + \beta^{\top}x\}}
\end{aligned}
\]
This is logistic regression.
diff --git a/schedule/slides/17-nonlinear-classifiers.html b/schedule/slides/17-nonlinear-classifiers.html
index 4b3ba71..b056529 100644
--- a/schedule/slides/17-nonlinear-classifiers.html
+++ b/schedule/slides/17-nonlinear-classifiers.html
@@ -397,7 +397,7 @@
17 Nonlinear classifiers
Stat 406
Daniel J. McDonald
-Last modified – 09 October 2023
+Last modified – 26 October 2023
\[
\DeclareMathOperator*{\argmin}{argmin}
\DeclareMathOperator*{\argmax}{argmax}
@@ -429,8 +429,8 @@ 17 Nonlinear classifiers
Last time
We reviewed logistic regression
\[\begin{aligned}
-\P(Y = 1 \given X=x) & = \frac{\exp\{\beta_0 + \beta^{\top}x\}}{1 + \exp\{\beta_0 + \beta^{\top}x\}} \\
-\P(Y = 0 \given X=x) & = \frac{1}{1 + \exp\{\beta_0 + \beta^{\top}x\}}=1-\frac{\exp\{\beta_0 + \beta^{\top}x\}}{1 + \exp\{\beta_0 + \beta^{\top}x\}}\end{aligned}\]
+Pr(Y = 1 \given X=x) & = \frac{\exp\{\beta_0 + \beta^{\top}x\}}{1 + \exp\{\beta_0 + \beta^{\top}x\}} \\
+Pr(Y = 0 \given X=x) & = \frac{1}{1 + \exp\{\beta_0 + \beta^{\top}x\}}=1-\frac{\exp\{\beta_0 + \beta^{\top}x\}}{1 + \exp\{\beta_0 + \beta^{\top}x\}}\end{aligned}\]
Make it nonlinear
diff --git a/search.json b/search.json
index 53001d1..42d04c1 100644
--- a/search.json
+++ b/search.json
@@ -340,7 +340,7 @@
"href": "schedule/slides/16-logistic-regression.html#meta-lecture",
"title": "UBC Stat406 2023W",
"section": "16 Logistic regression",
- "text": "16 Logistic regression\nStat 406\nDaniel J. McDonald\nLast modified – 09 October 2023\n\\[\n\\DeclareMathOperator*{\\argmin}{argmin}\n\\DeclareMathOperator*{\\argmax}{argmax}\n\\DeclareMathOperator*{\\minimize}{minimize}\n\\DeclareMathOperator*{\\maximize}{maximize}\n\\DeclareMathOperator*{\\find}{find}\n\\DeclareMathOperator{\\st}{subject\\,\\,to}\n\\newcommand{\\E}{E}\n\\newcommand{\\Expect}[1]{\\E\\left[ #1 \\right]}\n\\newcommand{\\Var}[1]{\\mathrm{Var}\\left[ #1 \\right]}\n\\newcommand{\\Cov}[2]{\\mathrm{Cov}\\left[#1,\\ #2\\right]}\n\\newcommand{\\given}{\\ \\vert\\ }\n\\newcommand{\\X}{\\mathbf{X}}\n\\newcommand{\\x}{\\mathbf{x}}\n\\newcommand{\\y}{\\mathbf{y}}\n\\newcommand{\\P}{\\mathcal{P}}\n\\newcommand{\\R}{\\mathbb{R}}\n\\newcommand{\\norm}[1]{\\left\\lVert #1 \\right\\rVert}\n\\newcommand{\\snorm}[1]{\\lVert #1 \\rVert}\n\\newcommand{\\tr}[1]{\\mbox{tr}(#1)}\n\\newcommand{\\brt}{\\widehat{\\beta}^R_{s}}\n\\newcommand{\\brl}{\\widehat{\\beta}^R_{\\lambda}}\n\\newcommand{\\bls}{\\widehat{\\beta}_{ols}}\n\\newcommand{\\blt}{\\widehat{\\beta}^L_{s}}\n\\newcommand{\\bll}{\\widehat{\\beta}^L_{\\lambda}}\n\\]"
+ "text": "16 Logistic regression\nStat 406\nDaniel J. McDonald\nLast modified – 25 October 2023\n\\[\n\\DeclareMathOperator*{\\argmin}{argmin}\n\\DeclareMathOperator*{\\argmax}{argmax}\n\\DeclareMathOperator*{\\minimize}{minimize}\n\\DeclareMathOperator*{\\maximize}{maximize}\n\\DeclareMathOperator*{\\find}{find}\n\\DeclareMathOperator{\\st}{subject\\,\\,to}\n\\newcommand{\\E}{E}\n\\newcommand{\\Expect}[1]{\\E\\left[ #1 \\right]}\n\\newcommand{\\Var}[1]{\\mathrm{Var}\\left[ #1 \\right]}\n\\newcommand{\\Cov}[2]{\\mathrm{Cov}\\left[#1,\\ #2\\right]}\n\\newcommand{\\given}{\\ \\vert\\ }\n\\newcommand{\\X}{\\mathbf{X}}\n\\newcommand{\\x}{\\mathbf{x}}\n\\newcommand{\\y}{\\mathbf{y}}\n\\newcommand{\\P}{\\mathcal{P}}\n\\newcommand{\\R}{\\mathbb{R}}\n\\newcommand{\\norm}[1]{\\left\\lVert #1 \\right\\rVert}\n\\newcommand{\\snorm}[1]{\\lVert #1 \\rVert}\n\\newcommand{\\tr}[1]{\\mbox{tr}(#1)}\n\\newcommand{\\brt}{\\widehat{\\beta}^R_{s}}\n\\newcommand{\\brl}{\\widehat{\\beta}^R_{\\lambda}}\n\\newcommand{\\bls}{\\widehat{\\beta}_{ols}}\n\\newcommand{\\blt}{\\widehat{\\beta}^L_{s}}\n\\newcommand{\\bll}{\\widehat{\\beta}^L_{\\lambda}}\n\\]"
},
{
"objectID": "schedule/slides/16-logistic-regression.html#last-time",
@@ -354,7 +354,7 @@
"href": "schedule/slides/16-logistic-regression.html#direct-model",
"title": "UBC Stat406 2023W",
"section": "Direct model",
- "text": "Direct model\nInstead, let’s directly model the posterior\n\\[\n\\begin{aligned}\nPr(Y = 1 \\given X=x) & = \\frac{\\exp\\{\\beta_0 + \\beta^{\\top}x\\}}{1 + \\exp\\{\\beta_0 + \\beta^{\\top}x\\}} \\\\\n\\P(Y = 0 | X=x) & = \\frac{1}{1 + \\exp\\{\\beta_0 + \\beta^{\\top}x\\}}=1-\\frac{\\exp\\{\\beta_0 + \\beta^{\\top}x\\}}{1 + \\exp\\{\\beta_0 + \\beta^{\\top}x\\}}\n\\end{aligned}\n\\]\nThis is logistic regression."
+ "text": "Direct model\nInstead, let’s directly model the posterior\n\\[\n\\begin{aligned}\nPr(Y = 1 \\given X=x) & = \\frac{\\exp\\{\\beta_0 + \\beta^{\\top}x\\}}{1 + \\exp\\{\\beta_0 + \\beta^{\\top}x\\}} \\\\\nPr(Y = 0 | X=x) & = \\frac{1}{1 + \\exp\\{\\beta_0 + \\beta^{\\top}x\\}}=1-\\frac{\\exp\\{\\beta_0 + \\beta^{\\top}x\\}}{1 + \\exp\\{\\beta_0 + \\beta^{\\top}x\\}}\n\\end{aligned}\n\\]\nThis is logistic regression."
},
{
"objectID": "schedule/slides/16-logistic-regression.html#why-this",
@@ -1432,7 +1432,7 @@
"href": "schedule/slides/00-gradient-descent.html#meta-lecture",
"title": "UBC Stat406 2023W",
"section": "00 Gradient descent",
- "text": "00 Gradient descent\nStat 406\nDaniel J. McDonald\nLast modified – 16 October 2023\n\\[\n\\DeclareMathOperator*{\\argmin}{argmin}\n\\DeclareMathOperator*{\\argmax}{argmax}\n\\DeclareMathOperator*{\\minimize}{minimize}\n\\DeclareMathOperator*{\\maximize}{maximize}\n\\DeclareMathOperator*{\\find}{find}\n\\DeclareMathOperator{\\st}{subject\\,\\,to}\n\\newcommand{\\E}{E}\n\\newcommand{\\Expect}[1]{\\E\\left[ #1 \\right]}\n\\newcommand{\\Var}[1]{\\mathrm{Var}\\left[ #1 \\right]}\n\\newcommand{\\Cov}[2]{\\mathrm{Cov}\\left[#1,\\ #2\\right]}\n\\newcommand{\\given}{\\ \\vert\\ }\n\\newcommand{\\X}{\\mathbf{X}}\n\\newcommand{\\x}{\\mathbf{x}}\n\\newcommand{\\y}{\\mathbf{y}}\n\\newcommand{\\P}{\\mathcal{P}}\n\\newcommand{\\R}{\\mathbb{R}}\n\\newcommand{\\norm}[1]{\\left\\lVert #1 \\right\\rVert}\n\\newcommand{\\snorm}[1]{\\lVert #1 \\rVert}\n\\newcommand{\\tr}[1]{\\mbox{tr}(#1)}\n\\newcommand{\\brt}{\\widehat{\\beta}^R_{s}}\n\\newcommand{\\brl}{\\widehat{\\beta}^R_{\\lambda}}\n\\newcommand{\\bls}{\\widehat{\\beta}_{ols}}\n\\newcommand{\\blt}{\\widehat{\\beta}^L_{s}}\n\\newcommand{\\bll}{\\widehat{\\beta}^L_{\\lambda}}\n\\]"
+ "text": "00 Gradient descent\nStat 406\nDaniel J. McDonald\nLast modified – 25 October 2023\n\\[\n\\DeclareMathOperator*{\\argmin}{argmin}\n\\DeclareMathOperator*{\\argmax}{argmax}\n\\DeclareMathOperator*{\\minimize}{minimize}\n\\DeclareMathOperator*{\\maximize}{maximize}\n\\DeclareMathOperator*{\\find}{find}\n\\DeclareMathOperator{\\st}{subject\\,\\,to}\n\\newcommand{\\E}{E}\n\\newcommand{\\Expect}[1]{\\E\\left[ #1 \\right]}\n\\newcommand{\\Var}[1]{\\mathrm{Var}\\left[ #1 \\right]}\n\\newcommand{\\Cov}[2]{\\mathrm{Cov}\\left[#1,\\ #2\\right]}\n\\newcommand{\\given}{\\ \\vert\\ }\n\\newcommand{\\X}{\\mathbf{X}}\n\\newcommand{\\x}{\\mathbf{x}}\n\\newcommand{\\y}{\\mathbf{y}}\n\\newcommand{\\P}{\\mathcal{P}}\n\\newcommand{\\R}{\\mathbb{R}}\n\\newcommand{\\norm}[1]{\\left\\lVert #1 \\right\\rVert}\n\\newcommand{\\snorm}[1]{\\lVert #1 \\rVert}\n\\newcommand{\\tr}[1]{\\mbox{tr}(#1)}\n\\newcommand{\\brt}{\\widehat{\\beta}^R_{s}}\n\\newcommand{\\brl}{\\widehat{\\beta}^R_{\\lambda}}\n\\newcommand{\\bls}{\\widehat{\\beta}_{ols}}\n\\newcommand{\\blt}{\\widehat{\\beta}^L_{s}}\n\\newcommand{\\bll}{\\widehat{\\beta}^L_{\\lambda}}\n\\]"
},
{
"objectID": "schedule/slides/00-gradient-descent.html#simple-optimization-techniques",
@@ -1481,7 +1481,7 @@
"href": "schedule/slides/00-gradient-descent.html#what-gamma-more-details-than-we-have-time-for",
"title": "UBC Stat406 2023W",
"section": "What \\(\\gamma\\)? (more details than we have time for)",
- "text": "What \\(\\gamma\\)? (more details than we have time for)\nWhat to use for \\(\\gamma_k\\)?\nFixed\n\nOnly works if \\(\\gamma\\) is exactly right\nUsually does not work\n\nDecay on a schedule\n\\(\\gamma_{k+1} = \\frac{\\gamma_k}{1+ck}\\) or \\(\\gamma_{k} = \\gamma_0 b^k\\)\nExact line search\n\nTells you exactly how far to go.\nAt each \\(k\\), solve \\(\\gamma_k = \\arg\\min_{s \\geq 0} f( x^{(k)} - s f(x^{(k-1)}))\\)\nUsually can’t solve this."
+ "text": "What \\(\\gamma\\)? (more details than we have time for)\nWhat to use for \\(\\gamma_k\\)?\nFixed\n\nOnly works if \\(\\gamma\\) is exactly right\nUsually does not work\n\nDecay on a schedule\n\\(\\gamma_{n+1} = \\frac{\\gamma_n}{1+cn}\\) or \\(\\gamma_{n} = \\gamma_0 b^n\\)\nExact line search\n\nTells you exactly how far to go.\nAt each iteration \\(n\\), solve \\(\\gamma_n = \\arg\\min_{s \\geq 0} f( x^{(n)} - s f(x^{(n-1)}))\\)\nUsually can’t solve this."
},
{
"objectID": "schedule/slides/00-gradient-descent.html#section",
@@ -2160,7 +2160,7 @@
"href": "schedule/index.html#f-final-exam",
"title": " Schedule",
"section": "F Final exam",
- "text": "F Final exam\nDate and time TBD.\n\n\n\n\n\n\nImportant\n\n\n\nDo not make any plans to leave Vancouver before the final exam date is announced.\n\n\n\nIn person attendance is required (per Faculty of Science guidelines)\nYou must bring your computer as the exam will be given through Canvas\nPlease arrange to borrow one from the library if you do not have your own. Let me know ASAP if this may pose a problem.\nYou may bring 2 sheets of front/back 8.5x11 paper with any notes you want to use. No other materials will be allowed.\nThere will be no required coding, but I may show code or output and ask questions about it.\nIt will be entirely multiple choice / True-False / matching, etc. Delivered on Canvas."
+ "text": "F Final exam\nMonday, December 18 at 12-2pm, location TBA\n\n\nIn person attendance is required (per Faculty of Science guidelines)\nYou must bring your computer as the exam will be given through Canvas\nPlease arrange to borrow one from the library if you do not have your own. Let me know ASAP if this may pose a problem.\nYou may bring 2 sheets of front/back 8.5x11 paper with any notes you want to use. No other materials will be allowed.\nThere will be no required coding, but I may show code or output and ask questions about it.\nIt will be entirely multiple choice / True-False / matching, etc. Delivered on Canvas."
},
{
"objectID": "schedule/slides/00-cv-for-many-models.html#meta-lecture",
@@ -3546,14 +3546,14 @@
"href": "schedule/slides/17-nonlinear-classifiers.html#meta-lecture",
"title": "UBC Stat406 2023W",
"section": "17 Nonlinear classifiers",
- "text": "17 Nonlinear classifiers\nStat 406\nDaniel J. McDonald\nLast modified – 09 October 2023\n\\[\n\\DeclareMathOperator*{\\argmin}{argmin}\n\\DeclareMathOperator*{\\argmax}{argmax}\n\\DeclareMathOperator*{\\minimize}{minimize}\n\\DeclareMathOperator*{\\maximize}{maximize}\n\\DeclareMathOperator*{\\find}{find}\n\\DeclareMathOperator{\\st}{subject\\,\\,to}\n\\newcommand{\\E}{E}\n\\newcommand{\\Expect}[1]{\\E\\left[ #1 \\right]}\n\\newcommand{\\Var}[1]{\\mathrm{Var}\\left[ #1 \\right]}\n\\newcommand{\\Cov}[2]{\\mathrm{Cov}\\left[#1,\\ #2\\right]}\n\\newcommand{\\given}{\\ \\vert\\ }\n\\newcommand{\\X}{\\mathbf{X}}\n\\newcommand{\\x}{\\mathbf{x}}\n\\newcommand{\\y}{\\mathbf{y}}\n\\newcommand{\\P}{\\mathcal{P}}\n\\newcommand{\\R}{\\mathbb{R}}\n\\newcommand{\\norm}[1]{\\left\\lVert #1 \\right\\rVert}\n\\newcommand{\\snorm}[1]{\\lVert #1 \\rVert}\n\\newcommand{\\tr}[1]{\\mbox{tr}(#1)}\n\\newcommand{\\brt}{\\widehat{\\beta}^R_{s}}\n\\newcommand{\\brl}{\\widehat{\\beta}^R_{\\lambda}}\n\\newcommand{\\bls}{\\widehat{\\beta}_{ols}}\n\\newcommand{\\blt}{\\widehat{\\beta}^L_{s}}\n\\newcommand{\\bll}{\\widehat{\\beta}^L_{\\lambda}}\n\\]"
+ "text": "17 Nonlinear classifiers\nStat 406\nDaniel J. McDonald\nLast modified – 26 October 2023\n\\[\n\\DeclareMathOperator*{\\argmin}{argmin}\n\\DeclareMathOperator*{\\argmax}{argmax}\n\\DeclareMathOperator*{\\minimize}{minimize}\n\\DeclareMathOperator*{\\maximize}{maximize}\n\\DeclareMathOperator*{\\find}{find}\n\\DeclareMathOperator{\\st}{subject\\,\\,to}\n\\newcommand{\\E}{E}\n\\newcommand{\\Expect}[1]{\\E\\left[ #1 \\right]}\n\\newcommand{\\Var}[1]{\\mathrm{Var}\\left[ #1 \\right]}\n\\newcommand{\\Cov}[2]{\\mathrm{Cov}\\left[#1,\\ #2\\right]}\n\\newcommand{\\given}{\\ \\vert\\ }\n\\newcommand{\\X}{\\mathbf{X}}\n\\newcommand{\\x}{\\mathbf{x}}\n\\newcommand{\\y}{\\mathbf{y}}\n\\newcommand{\\P}{\\mathcal{P}}\n\\newcommand{\\R}{\\mathbb{R}}\n\\newcommand{\\norm}[1]{\\left\\lVert #1 \\right\\rVert}\n\\newcommand{\\snorm}[1]{\\lVert #1 \\rVert}\n\\newcommand{\\tr}[1]{\\mbox{tr}(#1)}\n\\newcommand{\\brt}{\\widehat{\\beta}^R_{s}}\n\\newcommand{\\brl}{\\widehat{\\beta}^R_{\\lambda}}\n\\newcommand{\\bls}{\\widehat{\\beta}_{ols}}\n\\newcommand{\\blt}{\\widehat{\\beta}^L_{s}}\n\\newcommand{\\bll}{\\widehat{\\beta}^L_{\\lambda}}\n\\]"
},
{
"objectID": "schedule/slides/17-nonlinear-classifiers.html#last-time",
"href": "schedule/slides/17-nonlinear-classifiers.html#last-time",
"title": "UBC Stat406 2023W",
"section": "Last time",
- "text": "Last time\nWe reviewed logistic regression\n\\[\\begin{aligned}\n\\P(Y = 1 \\given X=x) & = \\frac{\\exp\\{\\beta_0 + \\beta^{\\top}x\\}}{1 + \\exp\\{\\beta_0 + \\beta^{\\top}x\\}} \\\\\n\\P(Y = 0 \\given X=x) & = \\frac{1}{1 + \\exp\\{\\beta_0 + \\beta^{\\top}x\\}}=1-\\frac{\\exp\\{\\beta_0 + \\beta^{\\top}x\\}}{1 + \\exp\\{\\beta_0 + \\beta^{\\top}x\\}}\\end{aligned}\\]"
+ "text": "Last time\nWe reviewed logistic regression\n\\[\\begin{aligned}\nPr(Y = 1 \\given X=x) & = \\frac{\\exp\\{\\beta_0 + \\beta^{\\top}x\\}}{1 + \\exp\\{\\beta_0 + \\beta^{\\top}x\\}} \\\\\nPr(Y = 0 \\given X=x) & = \\frac{1}{1 + \\exp\\{\\beta_0 + \\beta^{\\top}x\\}}=1-\\frac{\\exp\\{\\beta_0 + \\beta^{\\top}x\\}}{1 + \\exp\\{\\beta_0 + \\beta^{\\top}x\\}}\\end{aligned}\\]"
},
{
"objectID": "schedule/slides/17-nonlinear-classifiers.html#make-it-nonlinear",
diff --git a/sitemap.xml b/sitemap.xml
index 87f45b1..45346a0 100644
--- a/sitemap.xml
+++ b/sitemap.xml
@@ -2,166 +2,166 @@
https://github.com/UBC-STAT/stat-406/schedule/handouts/lab00-git.html
- 2023-10-16T18:13:02.456Z
+ 2023-10-26T13:27:09.096Z
https://github.com/UBC-STAT/stat-406/schedule/slides/22-nnets-estimation.html
- 2023-10-16T18:12:59.352Z
+ 2023-10-26T13:27:06.196Z
https://github.com/UBC-STAT/stat-406/schedule/slides/20-boosting.html
- 2023-10-16T18:12:57.792Z
+ 2023-10-26T13:27:04.808Z
https://github.com/UBC-STAT/stat-406/schedule/slides/18-the-bootstrap.html
- 2023-10-16T18:12:55.860Z
+ 2023-10-26T13:27:02.872Z
https://github.com/UBC-STAT/stat-406/schedule/slides/16-logistic-regression.html
- 2023-10-16T18:12:53.776Z
+ 2023-10-26T13:27:00.820Z
https://github.com/UBC-STAT/stat-406/schedule/slides/14-classification-intro.html
- 2023-10-16T18:12:52.004Z
+ 2023-10-26T13:26:59.144Z
https://github.com/UBC-STAT/stat-406/schedule/slides/12-why-smooth.html
- 2023-10-16T18:12:50.040Z
+ 2023-10-26T13:26:57.276Z
https://github.com/UBC-STAT/stat-406/schedule/slides/10-basis-expansions.html
- 2023-10-16T18:12:48.472Z
+ 2023-10-26T13:26:55.764Z
https://github.com/UBC-STAT/stat-406/schedule/slides/08-ridge-regression.html
- 2023-10-16T18:12:46.504Z
+ 2023-10-26T13:26:53.932Z
https://github.com/UBC-STAT/stat-406/schedule/slides/06-information-criteria.html
- 2023-10-16T18:12:44.384Z
+ 2023-10-26T13:26:51.908Z
https://github.com/UBC-STAT/stat-406/schedule/slides/04-bias-variance.html
- 2023-10-16T18:12:42.412Z
+ 2023-10-26T13:26:50.024Z
https://github.com/UBC-STAT/stat-406/schedule/slides/02-lm-example.html
- 2023-10-16T18:12:40.272Z
+ 2023-10-26T13:26:48.152Z
https://github.com/UBC-STAT/stat-406/schedule/slides/00-version-control.html
- 2023-10-16T18:12:38.620Z
+ 2023-10-26T13:26:46.524Z
https://github.com/UBC-STAT/stat-406/schedule/slides/00-quiz-0-wrap.html
- 2023-10-16T18:12:35.040Z
+ 2023-10-26T13:26:43.216Z
https://github.com/UBC-STAT/stat-406/schedule/slides/00-gradient-descent.html
- 2023-10-16T18:12:33.312Z
+ 2023-10-26T13:26:41.532Z
https://github.com/UBC-STAT/stat-406/schedule/slides/00-classification-losses.html
- 2023-10-16T18:12:30.532Z
+ 2023-10-26T13:26:39.768Z
https://github.com/UBC-STAT/stat-406/course-setup.html
- 2023-10-16T18:12:27.132Z
+ 2023-10-26T13:26:37.540Z
https://github.com/UBC-STAT/stat-406/computing/windows.html
- 2023-10-16T18:12:24.576Z
+ 2023-10-26T13:26:35.148Z
https://github.com/UBC-STAT/stat-406/computing/mac_x86.html
- 2023-10-16T18:12:22.520Z
+ 2023-10-26T13:26:33.136Z
https://github.com/UBC-STAT/stat-406/computing/index.html
- 2023-10-16T18:12:20.592Z
+ 2023-10-26T13:26:31.268Z
https://github.com/UBC-STAT/stat-406/index.html
- 2023-10-16T18:12:18.236Z
+ 2023-10-26T13:26:29.064Z
https://github.com/UBC-STAT/stat-406/faq.html
- 2023-10-16T18:12:20.076Z
+ 2023-10-26T13:26:30.768Z
https://github.com/UBC-STAT/stat-406/computing/mac_arm.html
- 2023-10-16T18:12:21.544Z
+ 2023-10-26T13:26:32.252Z
https://github.com/UBC-STAT/stat-406/computing/ubuntu.html
- 2023-10-16T18:12:23.508Z
+ 2023-10-26T13:26:34.068Z
https://github.com/UBC-STAT/stat-406/syllabus.html
- 2023-10-16T18:12:26.284Z
+ 2023-10-26T13:26:36.716Z
https://github.com/UBC-STAT/stat-406/schedule/index.html
- 2023-10-16T18:12:28.504Z
+ 2023-10-26T13:26:38.776Z
https://github.com/UBC-STAT/stat-406/schedule/slides/00-cv-for-many-models.html
- 2023-10-16T18:12:32.308Z
+ 2023-10-26T13:26:40.520Z
https://github.com/UBC-STAT/stat-406/schedule/slides/00-intro-to-class.html
- 2023-10-16T18:12:34.220Z
+ 2023-10-26T13:26:42.448Z
https://github.com/UBC-STAT/stat-406/schedule/slides/00-r-review.html
- 2023-10-16T18:12:37.136Z
+ 2023-10-26T13:26:45.136Z
https://github.com/UBC-STAT/stat-406/schedule/slides/01-lm-review.html
- 2023-10-16T18:12:39.448Z
+ 2023-10-26T13:26:47.340Z
https://github.com/UBC-STAT/stat-406/schedule/slides/03-regression-function.html
- 2023-10-16T18:12:41.436Z
+ 2023-10-26T13:26:49.192Z
https://github.com/UBC-STAT/stat-406/schedule/slides/05-estimating-test-mse.html
- 2023-10-16T18:12:43.508Z
+ 2023-10-26T13:26:51.040Z
https://github.com/UBC-STAT/stat-406/schedule/slides/07-greedy-selection.html
- 2023-10-16T18:12:45.372Z
+ 2023-10-26T13:26:52.864Z
https://github.com/UBC-STAT/stat-406/schedule/slides/09-l1-penalties.html
- 2023-10-16T18:12:47.564Z
+ 2023-10-26T13:26:54.924Z
https://github.com/UBC-STAT/stat-406/schedule/slides/11-kernel-smoothers.html
- 2023-10-16T18:12:49.440Z
+ 2023-10-26T13:26:56.700Z
https://github.com/UBC-STAT/stat-406/schedule/slides/13-gams-trees.html
- 2023-10-16T18:12:50.912Z
+ 2023-10-26T13:26:58.084Z
https://github.com/UBC-STAT/stat-406/schedule/slides/15-LDA-and-QDA.html
- 2023-10-16T18:12:52.876Z
+ 2023-10-26T13:27:00.000Z
https://github.com/UBC-STAT/stat-406/schedule/slides/17-nonlinear-classifiers.html
- 2023-10-16T18:12:54.776Z
+ 2023-10-26T13:27:01.840Z
https://github.com/UBC-STAT/stat-406/schedule/slides/19-bagging-and-rf.html
- 2023-10-16T18:12:56.848Z
+ 2023-10-26T13:27:03.840Z
https://github.com/UBC-STAT/stat-406/schedule/slides/21-nnets-intro.html
- 2023-10-16T18:12:58.464Z
+ 2023-10-26T13:27:05.416Z
https://github.com/UBC-STAT/stat-406/schedule/slides/23-nnets-other.html
- 2023-10-16T18:13:00.556Z
+ 2023-10-26T13:27:07.276Z