Skip to content

Latest commit

 

History

History
86 lines (61 loc) · 7.46 KB

README.md

File metadata and controls

86 lines (61 loc) · 7.46 KB

PyMUSAS-Models

CI

This repository contains all of the released PyMUSAS models, and the following documentation:

  • Model introduction, this is useful context to better understand the model naming conventions.
  • Model naming conventions
  • Overview of the models, useful for comparing the models.
  • Issues / bug reports / improving the models
  • Development

All of the models are released through GitHub releases as .whl and .tar.gz files. Each model release contains detailed information about the model, more information than specified through the model naming convention, for example the lexicons used, URL to the lexicon, etc.

Model introduction

All of the models are rule based taggers, and all output USAS semantic categories on the token level. The rules rely on lexicon and lexical information to classify a token into semantic categories. The lexicon information comes from a lexicon, of which the lexicons used in these models all come from the Multilingual USAS GitHub repository. The lexical information used is the text, lemma, and Part Of Speech (POS) of the token, this information is then used to find the correct lexicon entry in the given lexicon(s). Note that not all lexical information is required, but the more information the more likely you will have a more accurate tagger.

If the model uses a Multi Word Expression (MWE) lexicon then the tagger can identify MWEs and their associated semantic categories. Furthermore, these lexicons can be more than just lookup tables they can contain a pattern matching syntax, of which more details of this can be found in these notes. In addition, the POS tagset used in these lexicons can differ from the tagset within the lexical information therefore POS mappers are used to map from the lexical POS tagset (lexical POS tagset is most likely determined by the POS tagger used on the text) to the lexicon POS tagset.

As a token or tokens, in MWE cases, can be matched to multiple lexicon entries the rule based tagger uses a ranking system to determine the best token match.

For more detailed information on the rule based tagger go to the following PyMUSAS API documentation page.

Model naming conventions

We expect all model packages to follow the naming convention of [lang]_[name], whereby lang is a BCP 47 code of the language, which is a similar convention as spaCy uses. The name is then split into:

  • rules used:
    • single: Only a single word lexicon is used.
    • dual: Both a single and Multi Word Expression lexicons are used.
  • POS Mapping used to map the POS tagset from the tagged text to the POS tagset used in the lexicons of the rule based tagger.
    • upos2usas: Maps from UPOS tagged text to USAS core tagset of the lexicons.
    • basiccorcencc2usas: Maps Basic CorCenCC tagged text to USAS core tagset of the lexicons.
    • none: No POS mapper was used.
  • ranker the ranker used to determine the best lexicon entry match for the token.
    • contextual: Uses the ContextualRuleBasedRanker, which ranks based on heuristic rules and then finds the best lexicon match for each token taking into account all other tokens in the text. For more details on this ranker see the ContextualRuleBasedRanker documentation.

For example, cy_single_basiccorcencc2usas_contextual is a Welsh single word lexicon model that maps the tagged text POS labels from Basic CorCenCC tagset to the USAS core tagset to be compatible with the lexicons used in this rule based tagger and uses the contextual ranker.

Model versioning

Similar to the the spaCy models, our model versioning reflects the compatibility with PyMUSAS, as well as the model version. A model version a.b.c translates to:

  • a: PyMUSAS major version. For example, 0 for PyMUSAS v0.x.x
  • b: PyMUSAS minor version. For example, 2 for PyMUSAS v0.2.x
  • c: Model version. Different model configurations, for example using different or updated lexicons.

Overview of the models

Language (BCP 47 language code) Model Name MWE POS Mapper Ranker File Size
Mandarin Chinese (cmn) cmn_dual_upos2usas_contextual ✔️ UPOS 2 USAS Contextual 1.28MB
Mandarin Chinese (cmn) cmn_single_upos2usas_contextual UPOS 2 USAS Contextual 1.00MB
Welsh (cy) cy_dual_basiccorcencc2usas_contextual ✔️ Basic CorCenCC 2 USAS Contextual 1.09MB
Welsh (cy) cy_single_basiccorcencc2usas_contextual Basic CorCenCC 2 USAS Contextual 1.09MB
Spanish, Castilian (es) es_dual_upos2usas_contextual ✔️ UPOS 2 USAS Contextual 0.20MB
Spanish, Castilian (es) es_single_upos2usas_contextual UPOS 2 USAS Contextual 0.16MB
Finnish (fi) fi_single_upos2usas_contextual UPOS 2 USAS Contextual 0.63MB
French (fr) fr_single_upos2usas_contextual UPOS 2 USAS Contextual 0.08MB
Indonesian (id) id_single_none_contextual None Contextual 0.24MB
Italian (it) it_dual_upos2usas_contextual ✔️ UPOS 2 USAS Contextual 0.50MB
Italian (it) it_single_upos2usas_contextual UPOS 2 USAS Contextual 0.42MB
Dutch, Flemish (nl) nl_single_upos2usas_contextual UPOS 2 USAS Contextual 0.15MB
Portuguese (pt) pt_dual_upos2usas_contextual ✔️ UPOS 2 USAS Contextual 0.27MB
Portuguese (pt) pt_single_upos2usas_contextual UPOS 2 USAS Contextual 0.25MB
English (en) en_dual_none_contextual ✔️ None Contextual 0.88MB
English (en) en_single_none_contextual None Contextual 0.73MB
  • MWE -- ✔️ means that the model supports identification and tagging of Multi Word Expressions.

Issues / bug reports / improving the models

These models are not statistical they are rule based, however they are still error prone as not all rules will cover every situation and in some cases this is not possible. If you are finding a lot of mis-classified tokens please do file a report on the PyMUSAS issue tracker so that we can try to improve the model. Thank you in advance for your support.

Development

If you are contributing to this repository, please go to the CONTRIBUTING.md file to learn more about how to contribute to this repository and in general learn more about this repository.

Acknowledgements

The contents of this README is heavily based on the spaCy models repository README, many thanks for writing that great README.