-
Notifications
You must be signed in to change notification settings - Fork 2
/
source_attribution.py
192 lines (148 loc) · 6.91 KB
/
source_attribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import os
import numpy as np
tf.enable_eager_execution()
import transformer
import argparse
import pdb
import sys
import re
from collections import Counter
from tensorflow.python import debug as tf_debug
from tensorflow.python.ops import math_ops
from tensorflow.python.ops import embedding_ops
import fastBPE
import platform
use_py3 = platform.python_version()[0] == '3'
parser = argparse.ArgumentParser(description='TensorFlow code for generating from CTRL')
parser.add_argument('--model_dir', type=str, required=True,
help='location of model checkpoint')
parser.add_argument('--seed', type=int, default=1337,
help='random seed for TensorFlow, numpy and PythonHash')
args = parser.parse_args()
tf.random.set_random_seed(args.seed)
os.environ['PYTHONHASHSEED'] = str(args.seed)
np.random.seed(args.seed)
# load the vocabulary from file
vocab = open('vocab').read().decode(encoding='utf-8').split('\n') if not use_py3 else open('vocab', encoding='utf-8').read().split('\n')
vocab = list(map(lambda x: x.split(' ')[0], vocab)) + ['<unk>'] + ['\n']
print ('{} unique words'.format(len(vocab)))
# length of the vocabulary
vocab_size = len(vocab)
# define the numericalization map
# idx2word maps the numericalized ID to the word
# word2idx maps the word to the numericalized ID
word2idx = {u:i for i, u in enumerate(vocab)}
idx2word = np.array(vocab)
# sequence length to use for the transformer
# the model is trained with a seq_length of 512
# so, any value <= 512 should work
seq_length = 256
# the dimension of the transformer
embedding_dim = 1280
# Now, we begin defining the model
# we defer the transformer definition to transformer.py
# here, we only define the tied softmax layer
# this layer ties the softmax weights to the input embeddings
class TiedEmbeddingSoftmax(tf.keras.layers.Layer):
def __init__(self, vocab_size=vocab_size, embedding_size=embedding_dim, **kwargs):
super(TiedEmbeddingSoftmax, self).__init__()
self.w = self.add_weight(name='w', shape=(vocab_size, embedding_size),
initializer='random_normal',
trainable=True)
self.b = self.add_weight(name='b', shape=(vocab_size,),
initializer='zeros',
trainable=True)
def call(self, inputs, embed=True):
if embed:
dtype = tf.keras.backend.dtype(inputs)
if dtype != 'int32' and dtype != 'int64':
inputs = math_ops.cast(inputs, 'int32')
return embedding_ops.embedding_lookup(self.w, inputs)
else:
return tf.tensordot(inputs, tf.transpose(self.w), 1) + self.b
# input for the keras model
tokens = tf.keras.layers.Input(shape=(seq_length,), dtype='int32')
# instantiates a tied softmax class
tied_embedding_softmax = TiedEmbeddingSoftmax()
# embedded tokens, before passing it to the transformer
embedded = tied_embedding_softmax(tokens, embed=True)
# the activations after passing it from the transformer
# for some odd reason, TPUs don't play well with specifying the arguments of the Encoder() function
# so you have to leave them at their defaults
transformed = transformer.Encoder()(embedded, training=False)
# pass the activations from our tiedsoftmax class
# this time with embed=False denoting that we are doing the softmax operation
# and not a lookup
logits = tied_embedding_softmax(transformed, embed=False)
# finally, define the Keras model with inputs as tokens and outputs as the logits we just computed
model = tf.keras.Model(inputs=tokens, outputs=logits)
# the loss function is a simple categorical crossentropy between the logits and the labels
def loss(labels, logits):
return tf.keras.losses.sparse_categorical_crossentropy(labels, logits, from_logits=True)
# the optimizer is not used since this code only supports inference
# however, to compile the model, we still define it
optimizer = tf.contrib.tpu.CrossShardOptimizer(
tf.contrib.estimator.clip_gradients_by_norm(
tf.train.AdagradOptimizer(learning_rate=1e-2), 0.25)
)
# compile the model with the optimizer and loss
model.compile(optimizer=optimizer, loss=loss)
print(model.summary())
# IMPORTANT
# this is where the saved model is presented to the code
# the model directory should have the model checkpoint and
# a checkpoint file
run_config = tf.contrib.tpu.RunConfig(
model_dir=args.model_dir)
# this converts the Keras model to a TensorFlow estimator
# this step is critical
# remember to patch the TF 1.14 file before running the code, else you're going to see errors here
estimator_model = tf.keras.estimator.model_to_estimator(keras_model=model, config=run_config)
# we now create a serving function from this estimator
# this enables us to load the model once and easily query it multiple times
def serving_input_fn():
inputs = {'input_1': tf.placeholder(tf.int32, [2,seq_length])}
return tf.estimator.export.ServingInputReceiver(inputs, inputs)
predict_fn = tf.contrib.predictor.from_estimator(estimator_model, serving_input_fn)
# almost there, we now take the user prompt and tokenize with BPE
# load BPE codes
bpe = fastBPE.fastBPE('codes', 'vocab')
domains = []
with open('control_codes.txt', 'r') as f:
domains = [line.split() for line in f.readlines()]
domains = [(t[1], float(t[0])) for t in domains]
while True:
_prompt = raw_input('ENTER PROMPT: ') if not use_py3 else input('ENTER PROMPT: ')
ppls = {}
# loop over all domains and compute perplexity
for domain, domain_prior in domains:
print(u'computing for domain: {}'.format(domain))
# tokenize data and add domain tag to it
prompt = domain + u' ' + _prompt
split_prompt = bpe.apply([prompt])[0].split()
# numericalize data and pad to the seq_len dimension
text = [word2idx[i] for i in split_prompt]
padding_text = text + [0] * (seq_length - len(text))
tokens_generated = np.tile(padding_text, (2,1))
output_scores = predict_fn({'input_1':tokens_generated})['tied_embedding_softmax'].squeeze()[0]
token_scores = output_scores[:-1]
# compute the perplexity for this sequence
xent = 0
for sequence_idx, token_idx in enumerate(text[1:]):
token = idx2word[token_idx]
# compute the probability of this token
Z = np.exp(token_scores[sequence_idx]).sum()
token_prob = np.exp(token_scores[sequence_idx, token_idx]) / Z
xent -= np.log(token_prob) / len(text[1:])
ppls[domain] = round(np.exp(xent), 6)
#print(u'{} ppl = {}'.format(domain, ppls[domain]))
# sort the domains based on perplexities and print
ppls = [(k, v) for k, v in ppls.items()]
ppls.sort(key=lambda x: x[1])
print('PROMPT: {}'.format(_prompt))
for t in ppls:
domain, ppl = t
print(u'{} ppl = {}'.format(domain, ppl))