Skip to content

Commit

Permalink
OpenMP finally working
Browse files Browse the repository at this point in the history
  • Loading branch information
gvegayon committed Oct 3, 2023
1 parent f74b459 commit 8ea9aef
Show file tree
Hide file tree
Showing 4 changed files with 19 additions and 75 deletions.
6 changes: 1 addition & 5 deletions include/barry/model-bones.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -293,11 +293,7 @@ class Model {
* constant.
*/
///@{
double get_norm_const(
const std::vector< double > & params,
const size_t & i,
bool as_log = false
);
std::vector< double > & get_normalizing_constants();

const std::vector< Array_Type > * get_pset(
const size_t & i
Expand Down
40 changes: 3 additions & 37 deletions include/barry/model-meat.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -106,11 +106,6 @@ inline double likelihood_(
double numerator = 0.0;

// Computing the numerator
#if defined(__OPENMP) || defined(_OPENMP)
#pragma omp simd reduction(+:numerator)
#elif defined(__GNUC__) && !defined(__clang__)
#pragma GCC ivdep
#endif
for (size_t j = 0u; j < params.size(); ++j)
numerator += *(stats_target + j) * params[j];

Expand Down Expand Up @@ -970,39 +965,10 @@ inline double Model<Array_Type,Data_Counter_Type, Data_Rule_Type, Data_Rule_Dyn_
}

template <typename Array_Type, typename Data_Counter_Type, typename Data_Rule_Type, typename Data_Rule_Dyn_Type>
inline double Model<Array_Type,Data_Counter_Type, Data_Rule_Type, Data_Rule_Dyn_Type>:: get_norm_const(
const std::vector<double> & params,
const size_t & i,
bool as_log
) {

// Checking if the index exists
if (i >= arrays2support.size())
throw std::range_error("The requested support is out of range");

const auto id = arrays2support[i];

// Checking if we have updated the normalizing constant or not
if (!first_calc_done[id] || !vec_equal_approx(params, params_last[id]) )
{

first_calc_done[id] = true;

size_t k = params.size() + 1u;
size_t n = stats_support[id].size() / k;

normalizing_constants[id] = update_normalizing_constant(
params, &stats_support[id][0u], k, n
);

params_last[id] = params;

}
inline std::vector< double > &
Model<Array_Type,Data_Counter_Type, Data_Rule_Type, Data_Rule_Dyn_Type>:: get_normalizing_constants() {

return as_log ?
std::log(normalizing_constants[id]) :
normalizing_constants[id]
;
return normalizing_constants;

}

Expand Down
47 changes: 15 additions & 32 deletions include/barry/models/geese/geese-meat-likelihood.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -29,27 +29,16 @@ inline double Geese::likelihood(
model->update_normalizing_constants(par0);

// Following the prunning sequence
std::vector< size_t > * preseq;

if (use_reduced_sequence)
{

preseq = &this->reduced_sequence;

}
else
{

preseq = &this->sequence;

}
const std::vector< size_t > & preseq = use_reduced_sequence ?
this->reduced_sequence : this->sequence;

// The first time it is called, it need to generate the corresponding
// hashes of the columns so it is fast to access then (saves time
// hashing and looking in the map.)
auto arrays2support = model->get_arrays2support();
const auto arrays2support = model->get_arrays2support();
const auto & normconst = model->get_normalizing_constants();

for (auto& i : *preseq)
for (auto& i : preseq)
{

// We cannot compute probability at the leaf, we need to continue
Expand Down Expand Up @@ -80,11 +69,10 @@ inline double Geese::likelihood(
// Summation over all possible values of X
const auto & node_offspring = node.offspring;
std::vector< double > totprob_n(psets.size(), 0.0);
size_t nstate = 0u;
#if defined(_OPENMP) || defined(__OPENMP)
#pragma omp parallel for num_threads(ncores) \
shared(locations, psets, psets_stats, totprob_n) \
firstprivate(nfunctions, par0, node_offspring, array_id)
firstprivate(nfunctions, par0, node_offspring, array_id, normconst)
#endif
for (size_t n = 0u; n < psets.size(); ++n) // x = psets->begin(); x != psets->end(); ++x)
{
Expand Down Expand Up @@ -142,30 +130,25 @@ inline double Geese::likelihood(

// Is this state valid?
if (off_mult < 0.0)
{

++nstate;
continue;

}

// Multiplying by P(x|x_n), the transition probability
std::vector< double > temp_stats;
temp_stats.reserve(par0.size());
for (auto p = 0u; p < par0.size(); ++p)
temp_stats.push_back(psets_stats[par0.size() * nstate + p]);

nstate++;
temp_stats.push_back(psets_stats[par0.size() * n + p]);

// Use try catch in the following line
try {
off_mult *= model->likelihood(

off_mult *= barry::likelihood_(
&temp_stats[0u],
par0,
temp_stats,
array_id,
false,
true
normconst[arrays2support->operator[](array_id)],
par0.size(),
false
);

} catch (std::exception & e) {

auto err = std::string(e.what());
Expand Down Expand Up @@ -221,7 +204,7 @@ inline double Geese::likelihood(
// In the case that the sequence is empty, then it means
// that we are looking at a completely unnanotated tree,
// thus the likelihood should be one
if (preseq->size() == 0u)
if (preseq.size() == 0u)
return as_log ? -std::numeric_limits<double>::infinity() : 1.0;


Expand Down
1 change: 0 additions & 1 deletion tests/07-geese-flock.cpp
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@
#undef _OPENMP
#ifndef CATCH_CONFIG_MAIN
// #include "/opt/intel/oneapi/advisor/2022.0.0/include/advisor-annotate.h"
#include <chrono>
Expand Down

0 comments on commit 8ea9aef

Please sign in to comment.