This codebase contains the training code and algorithm for the Lang4Sim2Real paper:
Natural Language Can Help Bridge the Sim2Real Gap
Albert Yu, Adeline Foote, Raymond J. Mooney, and Roberto MartĂn-MartĂn
Robotics: Science and Systems (RSS), 2024
Web | PDF | 5-min video
This codebase builds on the functions/classes from the previously released repo, deltaco, which was released with the Del-TaCo paper.
@inproceedings{yu2024lang4sim2real,
title={Natural Language Can Help Bridge the Sim2Real Gap},
author={Yu, Albert and Foote, Adeline and Mooney, Raymond and MartĂn-MartĂn, Roberto},
booktitle={Robotics: Science and Systems (RSS), 2024},
year={2024}
}
- Step 0. Setting Up
- Step 1. Collect Sim+Real Data
- Step 2. Pretrain Policy CNN
- Step 3. Train Policies with Multi-task, Multi-domain BC
- Step 4. Evaluate Policies
After cloning this repo and cd
-ing into it:
cd train-lang4sim2real
conda env create -f env.yml
pip install -e .
python setup.py develop
cp rlkit/launchers/config_template.py rlkit/launchers/config.py
Modify the LOCAL_LOG_DIR
in train-lang4sim2real/rlkit/launchers/config.py
to a path on your machine where the experiment logs will be saved.
Pip-install the local sim environments (our version of the original robosuite repo):
cd ../robosuite-lang4sim2real
pip install -r requirements.txt
pip install -e .
If you plan on collecting data from scratch, also pip-install our local version of the original robomimic repo by following:
cd ../robomimic-lang4sim2real/robomimic
pip install -e .
On a machine with access to a real Franka Emika Panda robot, create a new python environment and install the real environments (our version of deoxys):
cd ../../deoxys-lang4sim2real
./InstallPackages
make -j build_deoxys=1
pip install -U -r requirements.txt
Follow instructions for compiling NUC codebase here, as well as additional documentation here.
Clone and install the sentence transformers repo.
cd ../..
git clone git@github.com:UKPLab/sentence-transformers.git
pip install -e .
Be aware that there may be more dependences you may need to pip install
to run specific parts of our code. Open an issue if you have difficulty with installation.
To install the pytorch implementation of BLEURT, run:
pip install git+https://github.com/lucadiliello/bleurt-pytorch.git
Afterwards, you should be able to run:
from bleurt_pytorch import BleurtConfig, BleurtForSequenceClassification, BleurtTokenizer
If you wish to run experiments involving CLIP as the visual backbone of the policy, you will need to install open_clip and add the following line to your ~/.bashrc
file:
export PYTHONPATH="$PYTHONPATH:[path_to_openclip_repo]/src"
If you wish to run experiments with R3M as the visual backbone of the policy, see the r3m repo for installation details.
All our datasets are on Box. However, the 2-step Pick-and-Place datasets are on OneDrive due to being larger than the Box file size limit.
- 0-3: Sim prior domain, 400 trajs/task, 200 timesteps/traj. 4 different robosuite objects for the four task indices.
- 4-5: Real target domain, 500 trajs/task, 18 timesteps/traj. carrot, forward or backward directions for the two task indices.
- 6-7: Real prior task, target domain, 50 trajs/task. 18 timesteps/traj. paper box, forward or backward directions for the two task indices.
- 0-3: Sim prior domain, 400 trajs/task, 200 timesteps/traj.
- 4-7: Sim target domain, 95 trajs/task, 200 timesteps/traj.
- 0-3: Sim prior domain, 1375 trajs/task, 320 timesteps/traj. 4 different robosuite objects for the four task indices.
- 4-5: Real target domain, 102 trajs (task 4), 101 trajs (task 5), 45 timesteps/traj. carrot into bowl onto plate.
- 0-3: Sim prior domain, 1375 trajs/task, 320 timesteps/traj. 4 different robosuite objects for the four task indices.
- 4-7: Sim target domain, 100 trajs/task, 320 timesteps/traj. 4 different robosuite objects for the four task indices.
- 0: Sim prior domain, 1000 trajs, 200 timesteps/traj.
- 1: Real target domain target task, 98 trajs, 45 timesteps/traj.
- 2: Real target domain unused task (reverse data of task 1), 102 trajs, 45 timesteps/traj.
- 0-1: Sim prior domain, 400 trajs/task, 200 timesteps/traj. 0 (counterclockwise), 1 (clockwise).
- 2-3: Sim target domain, 100 trajs/task, 200 timesteps/traj. 2 (counterclockwise), 3 (clockwise).
- To collect Domain Rando datasets, simply add the flag
--randomize wide
to thecollect_demonstrations_parallel.py
data collection script described below. - To collect ADR+RNA datasets, simply add the flag
--adr-rna
to thecollect_demonstrations_parallel.py
data collection script.
.../1pp_domain-rando_sim2real.hdf5 .../1pp_adr-rna_sim2real.hdf5 The task indices of the two baseline datasets are as described:
- 0-3: Sim prior domain, data collected from domain randomization or ADR+RNA. 400 trajs/task, 200 timesteps/traj. 4 different robosuite objects for the four task indices.
- 4-5: Real target domain, 500 trajs/task, 18 timesteps/traj. carrot, forward or backward directions for the two task indices.
- 6-7: Real prior task, target domain, 50 trajs/task. 18 timesteps/traj. paper box, forward or backward directions for the two task indices.
.../2pp_domain-rando_sim2real.hdf5 .../2pp_adr-rna_sim2real.hdf5 The task indices of the two baseline datasets are as described:
- 0-3: Sim prior domain, data collected from domain randomization or ADR+RNA. 1400 trajs/task, 320 timesteps/traj.
- 4-5: Real target task, target domain, 102 trajs (task 4), 101 trajs (task 5), 45 timesteps/traj. carrot into bowl onto plate (forward and reverse task directions).
- 6-7: Real prior task, target domain, 50 trajs/task, 45 timesteps/traj. wooden bridge block into bowl onto plate (forward and reverse task directions).
.../ww_domain-rando_sim2real.hdf5 .../ww_adr-rna_sim2real.hdf5 The task indices of the two baseline datasets are as described:
- 0: Sim prior domain, data collected from domain randomization or ADR+RNA. 1024 trajs (domain rando) and 950 trajs (domain rando).
- 1-2: Real target task, target domain. 98 trajs/task. Wrapping wire with eu plug around blender.
- 3-4: Real prior task, target domain. 51 trajs/task. Wrapping ethernet cable with wooden bridge block around spool.
python robosuite-lang4sim2real/robosuite/scripts/collect_demonstrations_parallel.py --robots Panda --environment Multitaskv2 --device scripted-policy --noise-std 0.05 -n 1600 -p 40 --task-idx-intervals 0-3 --directory [.../data_collection_out_dir] --camera agentview --img-dim 128 --state-mode 1 --multitask-hdf5-format --intra-thread-delay 30
python robosuite-lang4sim2real/robosuite/scripts/collect_demonstrations_parallel.py --robots Panda --environment Multitaskv2_ang1_fr5damp50 --device scripted-policy --noise-std 0.05 -n 400 -p 20 --task-idx-intervals 0-3 --directory [.../data_collection_out_dir] --camera agentview --img-dim 128 --state-mode 1 --multitask-hdf5-format --intra-thread-delay 3
python robosuite-lang4sim2real/robosuite/scripts/collect_demonstrations_parallel.py --robots Panda --environment PPObjToPotToStove --device scripted-policy --noise-std 0.05 -n 5600 -p 56 --task-idx-intervals 0-3 --directory [.../data_collection_out_dir] --camera agentview --img-dim 128 --state-mode 1 --multitask-hdf5-format --intra-thread-delay 40
python robosuite-lang4sim2real/robosuite/scripts/collect_demonstrations_parallel.py --robots Panda --environment PPObjToPotToStove_ang1_fr5damp50 --device scripted-policy --noise-std 0.05 -n 400 -p 20 --task-idx-intervals 0-3 --directory [.../data_collection_out_dir] --camera agentview --img-dim 128 --state-mode 1 --multitask-hdf5-format --intra-thread-delay 1
python robosuite-lang4sim2real/robosuite/scripts/collect_demonstrations_parallel.py --robots Panda --environment WrapUnattachedWire_v2 --device scripted-policy --noise-std 0.05 -n 800 -p 20 --task-idx-intervals 0-1 --directory [.../data_collection_out_dir] --camera agentview --img-dim 128 --state-mode 1 --multitask-hdf5-format --intra-thread-delay 5 --policy wrap-relative-location
python robosuite-lang4sim2real/robosuite/scripts/collect_demonstrations_parallel.py --robots Panda --environment WrapUnattachedWire_ang1_fr5damp50_v2 --device scripted-policy --noise-std 0.05 -n 200 -p 10 --task-idx-intervals 0-1 --directory [.../data_collection_out_dir] --camera agentview --img-dim 128 --state-mode 1 --multitask-hdf5-format --policy wrap-relative-location --save-video --intra-thread-delay 1
python deoxys-lang4sim2real/deoxys/scripts/data_collection.py --out-dir [.../data_collection_out_dir] --policy pick_place --env frka_pp --horiz 18 --noise 0.05 --obj-id 1 --num 1 --state-mode 1 --substeps-per-step 1
python deoxys-lang4sim2real/deoxys/scripts/data_collection.py --out-dir [.../data_collection_out_dir] --policy pick_place_n --env frka_obj_bowl_plate --horiz 45 --noise 0.05 --obj-id 6 --num 2 --state-mode 1 --substeps-per-step 1 --multistep-env
python deoxys-lang4sim2real/deoxys/scripts/data_collection.py --out-dir [.../data_collection_out_dir] --policy wrap_wire --env frka_wirewrap --horiz 45 --noise 0.05 --obj-id 2 --num 2 --state-mode 1 --substeps-per-step 1
python robosuite-lang4sim2real/robosuite/scripts/concat_hdf5.py -e [env_name] -p [buffer1_path] [buffer2_path] ... -d [out_dir_path] --concat-mode relabel-task-idx
- There are two concat-modes.
relabel-task-idx
gives each task in each buffer a new task idx, starting from 0. For instance, if buffer1 contained tasks 0-3 and buffer2 contained tasks 1-2, then the output buffer would contain tasks 0-5 (where buffer2's tasks 1-2 get mapped to tasks 4-5 in the output buffer).merge-on-task-idx
combines all the demos in each buffer with the same task-idx under that task-idx in the output buffer.
- Train gripper state predictor
python train-lang4sim2real/rlkit/lang4sim2real_utils/auto_captioner/train_gripper_state_pred.py --img-dir [.../2pp_sim2real.hdf5] --batch_size 256 --lr 0.02 --dom1-num-demos-per-task 100 --dom1-task-idxs 0-0 --num-epochs 100 --out-dir [.../out_dir]
- We expect
gripper_state_loss
to end up around 0.33,ee_pos_l1_err
to end up around 0.049, andgripper_classif_acc
to be 0.98.
-
Set up GroundingDINO so that you can run
from groundingdino.util.inference import load_model
. -
Run automatic stage labeler with the checkpoint from step 1 to get a buffer that has
pred_stage_num
alongsidelang_stage_num
.
python train-lang4sim2real/rlkit/lang4sim2real_utils/auto_captioner/object_detector_labeling.py ----gdino-path [.../parent_dir_of_gdino] --buffer-path [.../.hdf5] --gripper-state-pred-model [.../.pt from step 1]
Download the Pretrained ResNet-18 checkpoints we used for our experiments.
Each checkpoint file is named with three attributes:
- task: {1pp, 2pp, ww} for pick-and-place, 2-step pick-and-place, and wire wrap.
- setting: {sim2real, sim2sim}
- method: {lang-reg, lang-dist, stage-classif}
All commands shown below are language regression variant. See here for running the language distance variant, and here for running stage classification ablation.
Running this command requires downloading .../1pp_pretrain_real_prior-task.hdf5. Note that this trains with the real world prior task (pick-place paper box) instead of the target task (pick-place carrot).
python train-lang4sim2real/rlkit/lang4sim2real_utils/train/train_policy_cnn_lang4sim2real.py --dom1-img-dir [.../1pp_sim2real.hdf5] --dom1-task-idxs 0-3 --dom1-num-demos-per-task 100 --dom2-img-dir [.../1pp_pretrain_real_prior-task.hdf5] --dom2-task-idxs 0-0 --dom2-num-demos-per-task 50 --batch-size 256 --num-epochs 150 --lr 0.04 --out-dir [.../phase1_out_dir] --img-aug pad_crop --pad-size 12 --variant lang-reg --save-ckpt-freq 50 --shuffle-demos
python train-lang4sim2real/rlkit/lang4sim2real_utils/train/train_policy_cnn_lang4sim2real.py --dom1-img-dir [.../1pp_sim2sim.hdf5] --dom1-task-idxs 0-3 --dom1-num-demos-per-task 100 --dom2-img-dir [.../1pp_sim2sim.hdf5] --dom2-task-idxs 7-7 --dom2-num-demos-per-task 100 --batch-size 256 --num-epochs 150 --lr 0.04 --out-dir [.../phase1_out_dir] --img-aug pad_crop --pad-size 12 --variant lang-reg --save-ckpt-freq 50 --shuffle-demos
Running this command requires downloading .../2pp_pretrain_real_target-task.hdf5.
python train-lang4sim2real/rlkit/lang4sim2real_utils/train/train_policy_cnn_lang4sim2real.py --dom1-img-dir [.../2pp_sim2real.hdf5] --dom1-task-idxs 0-3 --dom1-num-demos-per-task 100 --dom2-img-dir [.../2pp_pretrain_real_target-task.hdf5] --dom2-task-idxs 0-0 --dom2-num-demos-per-task 100 --batch-size 256 --num-epochs 150 --lr 0.04 --out-dir [.../phase1_out_dir] --img-aug pad_crop --pad-size 12 --variant lang-reg --save-ckpt-freq 50 --shuffle-demos
python train-lang4sim2real/rlkit/lang4sim2real_utils/train/train_policy_cnn_lang4sim2real.py --dom1-img-dir [.../2pp_sim2sim.hdf5] --dom1-task-idxs 0-3 --dom1-num-demos-per-task 100 --dom2-img-dir [.../2pp_sim2sim.hdf5] --dom2-task-idxs 7-7 --dom2-num-demos-per-task 100 --batch-size 256 --num-epochs 150 --lr 0.04 --out-dir [.../phase1_out_dir] --img-aug pad_crop --pad-size 12 --variant lang-reg --save-ckpt-freq 50 --shuffle-demos
Running this command requires downloading .../ww_pretrain_real_target-task.hdf5.
python train-lang4sim2real/rlkit/lang4sim2real_utils/train/train_policy_cnn_lang4sim2real.py --dom1-img-dir [.../ww_sim2real.hdf5] --dom1-task-idxs 0-0 --dom1-num-demos-per-task 100 --dom2-img-dir [.../ww_pretrain_real_target-task.hdf5] --dom2-task-idxs 0-0 --dom2-num-demos-per-task 100 --batch-size 256 --num-epochs 150 --lr 0.04 --out-dir [.../phase1_out_dir] --img-aug pad_crop --pad-size 12 --variant lang-reg --save-ckpt-freq 50 --shuffle-demos
python train-lang4sim2real/rlkit/lang4sim2real_utils/train/train_policy_cnn_lang4sim2real.py --dom1-img-dir [.../ww_sim2sim.hdf5] --dom1-task-idxs 0-1 --dom1-num-demos-per-task 100 --dom2-img-dir [.../ww_sim2sim.hdf5] --dom2-task-idxs 3-3 --dom2-num-demos-per-task 100 --batch-size 256 --num-epochs 50 --lr 0.04 --out-dir [.../phase1_out_dir] --img-aug pad_crop --pad-size 12 --variant lang-reg --save-ckpt-freq 50 --shuffle-demos
To pretrain with the language distance variant, you will need precomputed BLEURT score matrices in this folder, or listed by experiment:
If you would like to change the language annotations at each stage of the trajectory (which are stored in the hdf5 datasets as an attribute under each task idx), you can recompute the BLEURT score matrices:
python train-lang4sim2real/rlkit/plot/plot_bleurt_dist.py --dom1-img-dir [hdf5_path1]
--dom1-task-idxs 0-1 --dom2-img-dir [hdf5_path2]
--dom2-task-idxs 1-1 --batch-size 256
Change the --dom*-task-idxs
flags as appropriate.
Then add the flags --variant lang-dist-dotprod --loss-arg-mult 40.0 --target-diff-mat-path [PATH_TO_BLEURT_TARGET_DIFF_MAT]
to the CNN pretraining command, where [PATH_TO_BLEURT_TARGET_DIFF_MAT]
is the path of the BLEURT score matrix downloaded/computed above, and change --variant lang-reg
to --variant lang-dist-dotprod
.
Change the flag: --variant lang-reg
to --variant stage-classif
. Keep --lr 0.04
.
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../1pp_sim2real.hdf5] --xdomain-buffer-envs Multitaskv2 frka_pp --xdomain-env-instruct-prefixes Multitaskv2:Simulation frka_pp:Real --train-target-task-idx-intervals 0-4 --eval-task-idx-intervals 0-0 --max-path-len 200 18 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env frka_pp --realrobot-target-obj=carrot --num-tasks 8 --num-train-target-demos-per-task 400 --focus-train-task-idx-intervals 4-4 --focus-train-tasks-sample-prob 0.2 --num-focus-train-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --policy-cnn-ckpt [.../phase1_cnn_ckpt.pt] --policy-cnn-ckpt-unfrozen-mods film+cnnlastlayer --save-checkpoint-freq 50 --gpu 0 --num-epochs 300 --seed 310
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../1pp_sim2real.hdf5] --xdomain-buffer-envs Multitaskv2 frka_pp --xdomain-env-instruct-prefixes Multitaskv2:Simulation frka_pp:Real --train-target-task-idx-intervals 4-4 --eval-task-idx-intervals 0-0 --max-path-len 200 18 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env frka_pp --realrobot-target-obj=carrot --num-tasks 8 --num-train-target-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --save-checkpoint-freq 50 --gpu 0 --num-epochs 300 --seed 110
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../1pp_sim2real.hdf5] --xdomain-buffer-envs Multitaskv2 frka_pp --xdomain-env-instruct-prefixes Multitaskv2:Simulation frka_pp:Real --train-target-task-idx-intervals 0-4 --eval-task-idx-intervals 0-0 --max-path-len 200 18 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env frka_pp --realrobot-target-obj=carrot --num-tasks 8 --num-train-target-demos-per-task 400 --focus-train-task-idx-intervals 4-4 --focus-train-tasks-sample-prob 0.2 --num-focus-train-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --save-checkpoint-freq 50 --gpu 0 --num-epochs 300 --seed 210
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../1pp_sim2real.hdf5] --xdomain-buffer-envs Multitaskv2 frka_pp --xdomain-env-instruct-prefixes Multitaskv2:Simulation frka_pp:Real --train-target-task-idx-intervals 0-4 --eval-task-idx-intervals 0-0 --max-path-len 200 18 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode concat_to_img_embs --env frka_pp --realrobot-target-obj=carrot --num-tasks 8 --num-train-target-demos-per-task 400 --focus-train-task-idx-intervals 4-4 --focus-train-tasks-sample-prob 0.2 --num-focus-train-demos-per-task 100 --policy-cnn-type clip --clip-ckpt=[.../clip_ckpt.pt] --freeze-clip --save-checkpoint-freq 250 --gpu 0 --num-epochs 300 --seed 610
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../1pp_sim2real.hdf5] --xdomain-buffer-envs Multitaskv2 frka_pp --xdomain-env-instruct-prefixes Multitaskv2:Simulation frka_pp:Real --train-target-task-idx-intervals 0-4 --eval-task-idx-intervals 0-0 --max-path-len 200 18 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode concat_to_img_embs --env frka_pp --realrobot-target-obj=carrot --num-tasks 8 --num-train-target-demos-per-task 400 --focus-train-task-idx-intervals 4-4 --focus-train-tasks-sample-prob 0.2 --num-focus-train-demos-per-task 100 --policy-cnn-type r3m --freeze-policy-cnn --save-checkpoint-freq 50 --gpu 0 --num-epochs 300 --seed 710
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../1pp_sim2real.hdf5] --xdomain-buffer-envs Multitaskv2 frka_pp --xdomain-env-instruct-prefixes Multitaskv2:Simulation frka_pp:Real --train-target-task-idx-intervals 0-4 --eval-task-idx-intervals 0-0 --max-path-len 200 18 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env frka_pp --realrobot-target-obj=carrot --num-tasks 8 --num-train-target-demos-per-task 400 --focus-train-task-idx-intervals 4-4 --focus-train-tasks-sample-prob 0.2 --num-focus-train-demos-per-task 100 --mmd-coefficient 0.01 --policy-resnet-conv-strides=2,2,1,1,1 --save-checkpoint-freq 50 --gpu 0 --num-epochs 300 --seed 1440
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../1pp_domain-rando_sim2real.hdf5] --xdomain-buffer-envs Multitaskv2 frka_pp --xdomain-env-instruct-prefixes Multitaskv2:Simulation frka_pp:Real --train-target-task-idx-intervals 0-4 --eval-task-idx-intervals 0-0 --max-path-len 200 18 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env frka_pp --realrobot-target-obj=carrot --num-tasks 8 --num-train-target-demos-per-task 400 --focus-train-task-idx-intervals 4-4 --focus-train-tasks-sample-prob 0.2 --num-focus-train-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --save-checkpoint-freq 50 --gpu 0 --num-epochs 300 --seed 1640
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../1pp_adr-rna_sim2real.hdf5] --xdomain-buffer-envs Multitaskv2 frka_pp --xdomain-env-instruct-prefixes Multitaskv2:Simulation frka_pp:Real --train-target-task-idx-intervals 0-4 --eval-task-idx-intervals 0-0 --max-path-len 200 18 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env frka_pp --realrobot-target-obj=carrot --num-tasks 8 --num-train-target-demos-per-task 400 --focus-train-task-idx-intervals 4-4 --focus-train-tasks-sample-prob 0.2 --num-focus-train-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --save-checkpoint-freq 50 --gpu 0 --num-epochs 300 --seed 1340
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../1pp_sim2sim.hdf5] --xdomain-buffer-envs Multitaskv2 Multitaskv2_ang1_fr5damp50 --xdomain-env-instruct-prefixes Multitaskv2:Simulation Multitaskv2_ang1_fr5damp50:Real --train-target-task-idx-intervals 0-4 --eval-task-idx-intervals 0-0 --max-path-len 200 200 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env Multitaskv2_ang1_fr5damp50 --realrobot-target-obj="" --num-tasks 8 --num-train-target-demos-per-task 400 --focus-train-task-idx-intervals 4-4 --focus-train-tasks-sample-prob 0.2 --num-focus-train-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --policy-cnn-ckpt [.../phase1_cnn_ckpt.pt] --policy-cnn-ckpt-unfrozen-mods film+cnnlastlayer --save-checkpoint-freq 1000 --gpu 0 --num-epochs 500 --seed 460
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../1pp_sim2sim.hdf5] --xdomain-buffer-envs Multitaskv2 Multitaskv2_ang1_fr5damp50 --xdomain-env-instruct-prefixes Multitaskv2:Simulation Multitaskv2_ang1_fr5damp50:Real --train-target-task-idx-intervals 4-4 7-7 --eval-task-idx-intervals 0-0 --max-path-len 200 200 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env Multitaskv2_ang1_fr5damp50 --realrobot-target-obj="" --num-tasks 8 --num-train-target-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --save-checkpoint-freq 1000 --gpu 0 --num-epochs 500 --seed 160
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../1pp_sim2sim.hdf5] --xdomain-buffer-envs Multitaskv2 Multitaskv2_ang1_fr5damp50 --xdomain-env-instruct-prefixes Multitaskv2:Simulation Multitaskv2_ang1_fr5damp50:Real --train-target-task-idx-intervals 0-4 7-7 --eval-task-idx-intervals 0-0 --max-path-len 200 200 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env Multitaskv2_ang1_fr5damp50 --realrobot-target-obj="" --num-tasks 8 --num-train-target-demos-per-task 400 --focus-train-task-idx-intervals 4-4 7-7 --focus-train-tasks-sample-prob 0.333 --num-focus-train-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --save-checkpoint-freq 1000 --gpu 0 --num-epochs 500 --seed 260
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../1pp_sim2sim.hdf5] --xdomain-buffer-envs Multitaskv2 Multitaskv2_ang1_fr5damp50 --xdomain-env-instruct-prefixes Multitaskv2:Simulation Multitaskv2_ang1_fr5damp50:Real --train-target-task-idx-intervals 0-4 7-7 --eval-task-idx-intervals 0-0 --max-path-len 200 200 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode concat_to_img_embs --env Multitaskv2_ang1_fr5damp50 --realrobot-target-obj="" --num-tasks 8 --num-train-target-demos-per-task 400 --focus-train-task-idx-intervals 4-4 7-7 --focus-train-tasks-sample-prob 0.333 --num-focus-train-demos-per-task 100 --policy-cnn-type clip --clip-ckpt=[.../clip_ckpt.pt] --freeze-clip --gpu 0 --num-epochs 500 --seed 660
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../1pp_sim2sim.hdf5] --xdomain-buffer-envs Multitaskv2 Multitaskv2_ang1_fr5damp50 --xdomain-env-instruct-prefixes Multitaskv2:Simulation Multitaskv2_ang1_fr5damp50:Real --train-target-task-idx-intervals 0-4 7-7 --eval-task-idx-intervals 0-0 --max-path-len 200 200 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode concat_to_img_embs --env Multitaskv2_ang1_fr5damp50 --realrobot-target-obj="" --num-tasks 8 --num-train-target-demos-per-task 400 --focus-train-task-idx-intervals 4-4 7-7 --focus-train-tasks-sample-prob 0.333 --num-focus-train-demos-per-task 100 --policy-cnn-type r3m --freeze-policy-cnn --gpu 0 --num-epochs 500 --seed 760
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../2pp_sim2real.hdf5] --xdomain-buffer-envs PPObjToPotToStove frka_obj_bowl_plate --xdomain-env-instruct-prefixes PPObjToPotToStove:Simulation frka_obj_bowl_plate:Real --train-target-task-idx-intervals 0-4 --eval-task-idx-intervals 0-0 --max-path-len 320 45 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env frka_obj_bowl_plate --realrobot-target-obj carrot --num-tasks 6 --num-train-target-demos-per-task 1375 --focus-train-task-idx-intervals 4-4 --focus-train-tasks-sample-prob 0.2 --num-focus-train-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --policy-cnn-ckpt [.../phase1_cnn_ckpt.pt] --policy-cnn-ckpt-unfrozen-mods film+cnnlastlayer --save-checkpoint-freq 50 --gpu 0 --num-epochs 600 --seed 110
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../2pp_sim2real.hdf5] --xdomain-buffer-envs PPObjToPotToStove frka_obj_bowl_plate --xdomain-env-instruct-prefixes PPObjToPotToStove:Simulation frka_obj_bowl_plate:Real --train-target-task-idx-intervals 4-4 --eval-task-idx-intervals 0-0 --max-path-len 320 45 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env frka_obj_bowl_plate --realrobot-target-obj carrot --num-tasks 6 --num-train-target-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --save-checkpoint-freq 50 --gpu 0 --num-epochs 600 --seed 110
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../2pp_sim2real.hdf5] --xdomain-buffer-envs PPObjToPotToStove frka_obj_bowl_plate --xdomain-env-instruct-prefixes PPObjToPotToStove:Simulation frka_obj_bowl_plate:Real --train-target-task-idx-intervals 0-4 --eval-task-idx-intervals 0-0 --max-path-len 320 45 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env frka_obj_bowl_plate --realrobot-target-obj carrot --num-tasks 6 --num-train-target-demos-per-task 1375 --focus-train-task-idx-intervals 4-4 --focus-train-tasks-sample-prob 0.2 --num-focus-train-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --save-checkpoint-freq 50 --gpu 0 --num-epochs 600 --seed 210
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../2pp_sim2real.hdf5] --xdomain-buffer-envs PPObjToPotToStove frka_obj_bowl_plate --xdomain-env-instruct-prefixes PPObjToPotToStove:Simulation frka_obj_bowl_plate:Real --train-target-task-idx-intervals 0-4 --eval-task-idx-intervals 0-0 --max-path-len 320 45 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode concat_to_img_embs --env frka_obj_bowl_plate --realrobot-target-obj=carrot --num-tasks 6 --num-train-target-demos-per-task 1400 --focus-train-task-idx-intervals 4-4 --focus-train-tasks-sample-prob 0.2 --num-focus-train-demos-per-task 100 --policy-cnn-type clip --clip-ckpt=[.../clip_ckpt.pt] --freeze-clip --save-checkpoint-freq 250 --gpu 0 --num-epochs 600 --seed 310
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../2pp_sim2real.hdf5] --xdomain-buffer-envs PPObjToPotToStove frka_obj_bowl_plate --xdomain-env-instruct-prefixes PPObjToPotToStove:Simulation frka_obj_bowl_plate:Real --train-target-task-idx-intervals 0-4 --eval-task-idx-intervals 0-0 --max-path-len 320 45 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode concat_to_img_embs --env frka_obj_bowl_plate --realrobot-target-obj=carrot --num-tasks 6 --num-train-target-demos-per-task 1400 --focus-train-task-idx-intervals 4-4 --focus-train-tasks-sample-prob 0.2 --num-focus-train-demos-per-task 100 --policy-cnn-type r3m --freeze-policy-cnn --save-checkpoint-freq 50 --gpu 0 --num-epochs 600 --seed 310
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../2pp_sim2real.hdf5] --xdomain-buffer-envs PPObjToPotToStove frka_obj_bowl_plate --xdomain-env-instruct-prefixes PPObjToPotToStove:Simulation frka_obj_bowl_plate:Real --train-target-task-idx-intervals 0-4 --eval-task-idx-intervals 0-0 --max-path-len 320 45 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env frka_obj_bowl_plate --realrobot-target-obj carrot --num-tasks 6 --num-train-target-demos-per-task 1375 --focus-train-task-idx-intervals 4-4 --focus-train-tasks-sample-prob 0.2 --num-focus-train-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --mmd-coefficient 0.01 --save-checkpoint-freq 50 --gpu 0 --num-epochs 600 --seed 220
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../2pp_domain-rando_sim2real.hdf5] --xdomain-buffer-envs PPObjToPotToStove frka_obj_bowl_plate --xdomain-env-instruct-prefixes PPObjToPotToStove:Simulation frka_obj_bowl_plate:Real --train-target-task-idx-intervals 0-4 --eval-task-idx-intervals 0-0 --max-path-len 320 45 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env frka_obj_bowl_plate --realrobot-target-obj=carrot --num-tasks 8 --num-train-target-demos-per-task 1400 --focus-train-task-idx-intervals 4-4 --focus-train-tasks-sample-prob 0.2 --num-focus-train-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --save-checkpoint-freq 50 --gpu 0 --num-epochs 600 --seed 1112
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../2pp_adr-rna_sim2real.hdf5] --xdomain-buffer-envs PPObjToPotToStove frka_obj_bowl_plate --xdomain-env-instruct-prefixes PPObjToPotToStove:Simulation frka_obj_bowl_plate:Real --train-target-task-idx-intervals 0-4 --eval-task-idx-intervals 0-0 --max-path-len 320 45 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env frka_obj_bowl_plate --realrobot-target-obj=carrot --num-tasks 8 --num-train-target-demos-per-task 1400 --focus-train-task-idx-intervals 4-4 --focus-train-tasks-sample-prob 0.2 --num-focus-train-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --save-checkpoint-freq 50 --gpu 0 --num-epochs 500 --seed 2012
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../2pp_sim2sim.hdf5] --xdomain-buffer-envs PPObjToPotToStove PPObjToPotToStove_ang1_fr5damp50 --xdomain-env-instruct-prefixes PPObjToPotToStove:Simulation PPObjToPotToStove_ang1_fr5damp50:Real --train-target-task-idx-intervals 0-4 --eval-task-idx-intervals 0-0 --max-path-len 320 320 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env PPObjToPotToStove_ang1_fr5damp50 --realrobot-target-obj="" --num-tasks 8 --num-train-target-demos-per-task 1400 --focus-train-task-idx-intervals 4-4 --focus-train-tasks-sample-prob 0.2 --num-focus-train-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --policy-cnn-ckpt [.../phase1_cnn_ckpt.pt] --policy-cnn-ckpt-unfrozen-mods film+cnnlastlayer --save-checkpoint-freq 1000 --gpu 0 --num-epochs 600 --seed 420
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../2pp_sim2sim.hdf5] --xdomain-buffer-envs PPObjToPotToStove PPObjToPotToStove_ang1_fr5damp50 --xdomain-env-instruct-prefixes PPObjToPotToStove:Simulation PPObjToPotToStove_ang1_fr5damp50:Real --train-target-task-idx-intervals 4-4 7-7 --eval-task-idx-intervals 0-0 --max-path-len 320 320 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env PPObjToPotToStove_ang1_fr5damp50 --realrobot-target-obj="" --num-tasks 8 --num-train-target-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --save-checkpoint-freq 1000 --gpu 0 --num-epochs 500 --seed 120
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../2pp_sim2sim.hdf5] --xdomain-buffer-envs PPObjToPotToStove PPObjToPotToStove_ang1_fr5damp50 --xdomain-env-instruct-prefixes PPObjToPotToStove:Simulation PPObjToPotToStove_ang1_fr5damp50:Real --train-target-task-idx-intervals 0-4 7-7 --eval-task-idx-intervals 0-0 --max-path-len 320 320 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env PPObjToPotToStove_ang1_fr5damp50 --realrobot-target-obj="" --num-tasks 8 --num-train-target-demos-per-task 1400 --focus-train-task-idx-intervals 4-4 7-7 --focus-train-tasks-sample-prob 0.333 --num-focus-train-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --save-checkpoint-freq 1000 --gpu 0 --num-epochs 600 --seed 220
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../2pp_sim2sim.hdf5] --xdomain-buffer-envs PPObjToPotToStove PPObjToPotToStove_ang1_fr5damp50 --xdomain-env-instruct-prefixes PPObjToPotToStove:Simulation PPObjToPotToStove_ang1_fr5damp50:Real --train-target-task-idx-intervals 0-4 7-7 --eval-task-idx-intervals 0-0 --max-path-len 320 320 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode concat_to_img_embs --env PPObjToPotToStove_ang1_fr5damp50 --realrobot-target-obj="" --num-tasks 8 --num-train-target-demos-per-task 1400 --focus-train-task-idx-intervals 4-4 7-7 --focus-train-tasks-sample-prob 0.333 --num-focus-train-demos-per-task 100 --policy-cnn-type clip --clip-ckpt=[.../clip_ckpt.pt] --freeze-clip --gpu 0 --num-epochs 600 --seed 620
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../2pp_sim2sim.hdf5] --xdomain-buffer-envs PPObjToPotToStove PPObjToPotToStove_ang1_fr5damp50 --xdomain-env-instruct-prefixes PPObjToPotToStove:Simulation PPObjToPotToStove_ang1_fr5damp50:Real --train-target-task-idx-intervals 0-4 7-7 --eval-task-idx-intervals 0-0 --max-path-len 320 320 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode concat_to_img_embs --env PPObjToPotToStove_ang1_fr5damp50 --realrobot-target-obj="" --num-tasks 8 --num-train-target-demos-per-task 1400 --focus-train-task-idx-intervals 4-4 7-7 --focus-train-tasks-sample-prob 0.333 --num-focus-train-demos-per-task 100 --policy-cnn-type r3m --freeze-policy-cnn --gpu 0 --num-epochs 600 --seed 720
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../ww_sim2real.hdf5] --xdomain-buffer-envs WrapUnattachedWire frka_wirewrap --xdomain-env-instruct-prefixes WrapUnattachedWire:Simulation frka_wirewrap:Real --train-target-task-idx-intervals 0-1 --eval-task-idx-intervals 0-0 --max-path-len 200 45 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env frka_wirewrap --realrobot-target-obj="eu white plug" --num-tasks 2 --num-train-target-demos-per-task 1000 --focus-train-task-idx-intervals 1-1 --focus-train-tasks-sample-prob 0.5 --num-focus-train-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --policy-cnn-ckpt [.../phase1_cnn_ckpt.pt] --policy-cnn-ckpt-unfrozen-mods film+cnnlastlayer --save-checkpoint-freq 50 --gpu 0 --num-epochs 600 --seed 410
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../ww_sim2real.hdf5] --xdomain-buffer-envs WrapUnattachedWire frka_wirewrap --xdomain-env-instruct-prefixes WrapUnattachedWire:Simulation frka_wirewrap:Real --train-target-task-idx-intervals 0-0 --eval-task-idx-intervals 0-0 --max-path-len 200 45 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env frka_wirewrap --realrobot-target-obj="eu white plug" --num-tasks 2 --num-train-target-demos-per-task 1000 --policy-resnet-conv-strides=2,2,1,1,1 --save-checkpoint-freq 50 --gpu 0 --num-epochs 600 --seed 110
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../ww_sim2real.hdf5] --xdomain-buffer-envs WrapUnattachedWire frka_wirewrap --xdomain-env-instruct-prefixes WrapUnattachedWire:Simulation frka_wirewrap:Real --train-target-task-idx-intervals 0-1 --eval-task-idx-intervals 0-0 --max-path-len 200 45 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env frka_wirewrap --realrobot-target-obj="eu white plug" --num-tasks 2 --num-train-target-demos-per-task 1000 --focus-train-task-idx-intervals 1-1 --focus-train-tasks-sample-prob 0.5 --num-focus-train-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --save-checkpoint-freq 50 --gpu 0 --num-epochs 600 --seed 210
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../ww_sim2real.hdf5] --xdomain-buffer-envs WrapUnattachedWire frka_wirewrap --xdomain-env-instruct-prefixes WrapUnattachedWire:Simulation frka_wirewrap:Real --train-target-task-idx-intervals 0-1 --eval-task-idx-intervals 0-0 --max-path-len 200 45 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode concat_to_img_embs --env frka_wirewrap --realrobot-target-obj="eu white plug" --realrobot-obj-set 0 --num-tasks 3 --num-train-target-demos-per-task 1000 --focus-train-task-idx-intervals 1-1 --focus-train-tasks-sample-prob 0.5 --num-focus-train-demos-per-task 100 --policy-cnn-type clip --clip-ckpt=[.../clip_ckpt.pt] --freeze-clip --save-checkpoint-freq 250 --gpu 0 --num-epochs 600 --seed 410
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../ww_sim2real.hdf5] --xdomain-buffer-envs WrapUnattachedWire frka_wirewrap --xdomain-env-instruct-prefixes WrapUnattachedWire:Simulation frka_wirewrap:Real --train-target-task-idx-intervals 0-1 --eval-task-idx-intervals 0-0 --max-path-len 200 45 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode concat_to_img_embs --env frka_wirewrap --realrobot-target-obj="eu white plug" --realrobot-obj-set 0 --num-tasks 3 --num-train-target-demos-per-task 1000 --focus-train-task-idx-intervals 1-1 --focus-train-tasks-sample-prob 0.5 --num-focus-train-demos-per-task 100 --policy-cnn-type r3m --freeze-policy-cnn --save-checkpoint-freq 50 --gpu 0 --num-epochs 600 --seed 410
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../ww_sim2real.hdf5] --xdomain-buffer-envs WrapUnattachedWire frka_wirewrap --xdomain-env-instruct-prefixes WrapUnattachedWire:Simulation frka_wirewrap:Real --train-target-task-idx-intervals 0-1 --eval-task-idx-intervals 0-0 --max-path-len 200 45 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env frka_wirewrap --realrobot-target-obj="eu white plug" --num-tasks 2 --num-train-target-demos-per-task 1000 --focus-train-task-idx-intervals 1-1 --focus-train-tasks-sample-prob 0.5 --num-focus-train-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --save-checkpoint-freq 50 --mmd-coefficient 1e-4 --gpu 0 --num-epochs 600 --seed 210
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../ww_domain-rando_sim2real.hdf5] --xdomain-buffer-envs WrapUnattachedWire frka_wirewrap --xdomain-env-instruct-prefixes WrapUnattachedWire:Simulation frka_wirewrap:Real --train-target-task-idx-intervals 0-1 --eval-task-idx-intervals 0-0 --max-path-len 200 45 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env frka_wirewrap --realrobot-target-obj="eu white plug" --realrobot-obj-set 0 --num-tasks 5 --num-train-target-demos-per-task 1000 --focus-train-task-idx-intervals 1-1 --focus-train-tasks-sample-prob 0.333 --num-focus-train-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --save-checkpoint-freq 50 --gpu 0 --num-epochs 500 --seed 1140
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../ww_adr-rna_sim2real.hdf5] --xdomain-buffer-envs WrapUnattachedWire frka_wirewrap --xdomain-env-instruct-prefixes WrapUnattachedWire:Simulation frka_wirewrap:Real --train-target-task-idx-intervals 0-1 --eval-task-idx-intervals 0-0 --max-path-len 200 45 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env frka_wirewrap --realrobot-target-obj="eu white plug" --realrobot-obj-set 0 --num-tasks 5 --num-train-target-demos-per-task 1000 --focus-train-task-idx-intervals 1-1 --focus-train-tasks-sample-prob 0.5 --num-focus-train-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --save-checkpoint-freq 50 --gpu 0 --num-epochs 500 --seed 2040
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../ww_sim2sim.hdf5] --xdomain-buffer-envs WrapUnattachedWire_v2 WrapUnattachedWire_ang1_fr5damp50_v2 --xdomain-env-instruct-prefixes WrapUnattachedWire_v2:Simulation WrapUnattachedWire_ang1_fr5damp50_v2:Real --train-target-task-idx-intervals 0-2 --eval-task-idx-intervals 0-0 --max-path-len 200 200 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env WrapUnattachedWire_ang1_fr5damp50_v2 --realrobot-target-obj="" --num-tasks 4 --num-train-target-demos-per-task 400 --focus-train-task-idx-intervals 2-2 --focus-train-tasks-sample-prob 0.333 --num-focus-train-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --policy-cnn-ckpt /home/mini_exps/lang4sim2real/phase1/2024-01-28_19-56-38/best.pt --policy-cnn-ckpt-unfrozen-mods film+cnnlastlayer --save-checkpoint-freq 1000 --gpu 0 --num-epochs 600 --seed 321
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../ww_sim2sim.hdf5] --xdomain-buffer-envs WrapUnattachedWire_v2 WrapUnattachedWire_ang1_fr5damp50_v2 --xdomain-env-instruct-prefixes WrapUnattachedWire_v2:Simulation WrapUnattachedWire_ang1_fr5damp50_v2:Real --train-target-task-idx-intervals 2-3 --eval-task-idx-intervals 0-0 --max-path-len 200 200 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env WrapUnattachedWire_ang1_fr5damp50_v2 --realrobot-target-obj="" --num-tasks 4 --num-train-target-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --save-checkpoint-freq 1000 --gpu 0 --num-epochs 500 --seed 110
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../ww_sim2sim.hdf5] --xdomain-buffer-envs WrapUnattachedWire_v2 WrapUnattachedWire_ang1_fr5damp50_v2 --xdomain-env-instruct-prefixes WrapUnattachedWire_v2:Simulation WrapUnattachedWire_ang1_fr5damp50_v2:Real --train-target-task-idx-intervals 0-3 --eval-task-idx-intervals 0-0 --max-path-len 200 200 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode film --policy-num-film-inputs 1 --env WrapUnattachedWire_ang1_fr5damp50_v2 --realrobot-target-obj="" --num-tasks 4 --num-train-target-demos-per-task 400 --focus-train-task-idx-intervals 2-3 --focus-train-tasks-sample-prob 0.5 --num-focus-train-demos-per-task 100 --policy-resnet-conv-strides=2,2,1,1,1 --save-checkpoint-freq 1000 --gpu 0 --num-epochs 600 --seed 210
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../ww_sim2sim.hdf5] --xdomain-buffer-envs WrapUnattachedWire_v2 WrapUnattachedWire_ang1_fr5damp50_v2 --xdomain-env-instruct-prefixes WrapUnattachedWire_v2:Simulation WrapUnattachedWire_ang1_fr5damp50_v2:Real --train-target-task-idx-intervals 0-3 --eval-task-idx-intervals 0-0 --max-path-len 200 200 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode concat_to_img_embs --env WrapUnattachedWire_ang1_fr5damp50_v2 --realrobot-target-obj="" --num-tasks 4 --num-train-target-demos-per-task 400 --focus-train-task-idx-intervals 2-3 --focus-train-tasks-sample-prob 0.5 --num-focus-train-demos-per-task 100 --policy-cnn-type clip --clip-ckpt=[.../clip_ckpt.pt] --freeze-clip --gpu 0 --num-epochs 500 --seed 610
python train-lang4sim2real/experiments/multitask_bc.py --train-target-buffers [.../ww_sim2sim.hdf5] --xdomain-buffer-envs WrapUnattachedWire_v2 WrapUnattachedWire_ang1_fr5damp50_v2 --xdomain-env-instruct-prefixes WrapUnattachedWire_v2:Simulation WrapUnattachedWire_ang1_fr5damp50_v2:Real --train-target-task-idx-intervals 0-3 --eval-task-idx-intervals 0-0 --max-path-len 200 200 --batch-size 57 --meta-batch-size 4 --task-emb-input-mode concat_to_img_embs --env WrapUnattachedWire_ang1_fr5damp50_v2 --realrobot-target-obj="" --num-tasks 4 --num-train-target-demos-per-task 400 --focus-train-task-idx-intervals 2-3 --focus-train-tasks-sample-prob 0.5 --num-focus-train-demos-per-task 100 --policy-cnn-type r3m --freeze-policy-cnn --gpu 0 --num-epochs 500 --seed 710
Evaluation Metrics can be found in the experiment output folder, in progress.csv
in the eval/env_infos/final/reward Mean
CSV key.
You may find python train-lang4sim2real/rlkit/plot/metric_calculator_by_split.py [list of .../exp_dir or parent of exp dirs]
useful for computing all successes and averaging them based on specific hyperparameters.
To evaluate CLIP/R3M policies, you will take the ckpt .pt
file from the experiment output folder, and add the --cnn-type clip
or --cnn-type r3m
flag. During evaluation, we gave 10% extra timesteps for the policy to finish executing (so if during data collection we allocated 18 timesteps for a trajectory, during evaluation we allowed 20, etc.).
python deoxys-lang4sim2real/deoxys/scripts/eval_collector.py --ckpt [ckpt] --obj-id [obj-id] --env frka_pp --state-mode 1 --task-embedding lang --lang-prefix Real: --max-path-len 20 --num-tasks 2 --eval-task-idxs 0-0 --num-rollouts-per-task 10 --gpu 0
python deoxys-lang4sim2real/deoxys/scripts/eval_collector.py --ckpt [ckpt] --obj-id [obj-id] --env frka_obj_bowl_plate --state-mode 1 --task-embedding lang --lang-prefix Real: --max-path-len 50 --num-tasks 2 --eval-task-idxs 0-0 --num-rollouts-per-task 10 --gpu 0
python deoxys-lang4sim2real/deoxys/scripts/eval_collector.py --ckpt [ckpt] --obj-id [obj-id] --env frka_wirewrap --state-mode 1 --task-embedding lang --lang-prefix Real: --max-path-len 50 --num-tasks 2 --eval-task-idxs 0-0 --num-rollouts-per-task 10 --gpu 0