ACC 2023 submission. link
Multiple differential Private forecasters for LQR.
python version: 3.9.12
package | version |
---|---|
numpy | 1.23.1 |
pandas | 1.4.4 |
PyYAML | 6.0 |
matplotlib | 3.5.3 |
tsai | 0.3.1 |
torch | 1.11.0 |
scikit-learn | 1.1.2 |
seaborn | 0.12.0 |
cvxpy | 1.2.1 |
For more details, see environment.yaml
.
Pls run all the source file in the root directory :)
- Go to the root directory of the repo.
-
To run experiments:
arima_syn.py
-
To plot:
arima_merge_plot.py
-
Pre-process uber data from the "uber data" directory. Please download the data here, and execute:
uber_preprocessing.py
-
To train timeseries forecast models:
uber_train_forecaster.py
-
To run experiments:
uber_syn.py
-
To plot:
uber_merge_plot.py
-
Src code of input-driven LQR controllers and ARIMA time series:
system_dynamics.py
-
Dimension of action space, state space, and other parameters:
parameters.yml
-
Functions to plot:
plot_utilities.py
-
Alternative Convex Search algorithm:
ACS.py
-
Class for timeseries sources:
src_class.py
Po-han Li - pohanli@utexas.edu