diff --git a/README.md b/README.md
index 0237062..9df5fa9 100644
--- a/README.md
+++ b/README.md
@@ -1,12 +1,9 @@
-
-
+# Temporal Logic Video (TLV) Dataset
[![Contributors][contributors-shield]][contributors-url]
[![Forks][forks-shield]][forks-url]
[![Stargazers][stars-shield]][stars-url]
[![MIT License][license-shield]][license-url]
-[![LinkedIn][linkedin-shield]][linkedin-url]
-
+## Overview
-
-
- Table of Contents
-
- - About The Project
- -
- Getting Started
-
-
- - Usage
- - Roadmap
- - Contributing
- - License
- - Contact
- - Acknowledgments
-
-
-
-
-## About The Project
-
-
-
-Given the lack of SOTA video datasets for long-horizon,
-temporally extended activity and object detection, we intro-
-duce the Temporal Logic Video (TLV) datasets. The syn-
-thetic TLV datasets are compiled by stitching together static
-images from computer vision datasets like COCO and
-ImageNet. This enables the artificial introduction of
-a wide range of TL specifications. Additionally, we have
-created two video datasets based on the open-source au-
-tonomous vehicle (AV) driving datasets NuScenes and
-Waymo.
-
-(back to top)
-
-
-## Getting Started
-
-This is an example of how you may give instructions on setting up your project locally.
-To get a local copy up and running follow these simple example steps.
+The Temporal Logic Video (TLV) Dataset addresses the scarcity of state-of-the-art video datasets for long-horizon, temporally extended activity and object detection. It comprises two main components:
-### Prerequisites
+1. Synthetic datasets: Generated by concatenating static images from established computer vision datasets (COCO and ImageNet), allowing for the introduction of a wide range of Temporal Logic (TL) specifications.
+2. Real-world datasets: Based on open-source autonomous vehicle (AV) driving datasets, specifically NuScenes and Waymo.
-If you want to generate syntetic dataset from COCO and ImageNet, you should download the source data first.
+## Table of Contents
-1. [ImageNet](https://image-net.org/challenges/LSVRC/2017/index.php): The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2017. Recommended file structure as follows:
-```
-|--ILSVRC
-|----Annotations
-|----Data
-|----ImageSets
-|----LOC_synset_mapping.txt
-```
+- [Dataset Composition](#dataset-composition)
+- [Dataset (Release)](#dataset)
+- [Installation](#installation)
+- [Usage](#usage)
+- [Data Generation](#data-generation)
+- [Contribution Guidelines](#contribution-guidelines)
+- [License](#license)
+- [Acknowledgments](#acknowledgments)
-2. [COCO](https://cocodataset.org/#download): Download the source data as follow:
-```
-|--COCO
-|----2017
-|------annotations
-|------train2017
-|------val2017
-```
+## Dataset Composition
-### Installation
-```
-python -m venv .venv
-source .venv/bin/activate
-python -m pip install --upgrade pip build
-python -m pip install --editable ."[dev, test]"
-```
-
-(back to top)
+### Synthetic Datasets
+- Source: COCO and ImageNet
+- Purpose: Introduce artificial Temporal Logic specifications
+- Generation Method: Image stitching from static datasets
-
-## Usage
-Please find argument details from run scripts.
-
-### Data Loader Common Argument
-* `data_root_dir`: The root directory where the COCO dataset is stored.
-* `mapping_to`: Map the original label to desired mapper, default is "coco".
-* `save_dir`: Directory where the generated dataset will be saved.
-### Synthetic Generator Common Argument
-* `initial_number_of_frame`: Initial number of frames for each video.
-* `max_number_frame`: Maximum number of frames for each video.
-* `number_video_per_set_of_frame`: Number of videos to generate per set of frames.
-* `increase_rate`: Rate at which the number of frames increases.
-* `ltl_logic`: Temporal logic to apply. Options include various logical expressions like "F prop1", "G prop1", etc.
-* `save_images`: Boolean to decide whether to save individual frame images (True or False).
-
-In each run script, make sure
-1. **coco synthetic data generator**
-COCO synthetic data generator can generate & compositions since it has multiple labels.
-```
-python3 run_scripts/run_synthetic_tlv_coco.py --data_root_dir "../COCO/2017" --save_dir "