forked from fanxiule/CRD_Fusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
288 lines (245 loc) · 13 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import os
import time
import numpy as np
import torch
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
import datasets
from utils import sec_to_hms_str, compute_disp_error, post_process, unpad_imgs
from crd_fusion_net import CRDFusionNet
from eval_options import EvalOptions
options = EvalOptions()
eval_opts = options.parse()
def save_pred(pred_disp, pred_occ, frame_id, log_path):
"""
Save prediction in .npy format
:param pred_disp: predicted disparity
:param pred_occ: occlusion map
:param frame_id: id or filename for the disparity map
:param log_path: path to save the prediction
:return: None
"""
pred_path = os.path.join(log_path, "pred")
if not os.path.exists(pred_path):
os.makedirs(pred_path)
for i in range(len(frame_id)):
if "/" in frame_id[i]:
scene, f_id = frame_id[i].rsplit('/', 1)
save_path = os.path.join(pred_path, scene)
if not os.path.exists(save_path):
os.makedirs(save_path)
else:
f_id = frame_id[i]
save_path = pred_path
disp = torch.squeeze(pred_disp[i]).detach().cpu().numpy()
disp_path = os.path.join(save_path, f_id) + ".npy"
np.save(disp_path, disp)
if pred_occ is not None:
occ = torch.squeeze(pred_occ[i]).detach().cpu().numpy()
occ_path = os.path.join(save_path, "occ_%s" % f_id) + ".npy"
np.save(occ_path, occ)
def log_time(epe, bad3, duration, batch_sz, start_time, current_step, total_steps):
"""
Print interim results including error metrics, time elapsed, and estimated time left for the current training
:param epe: endpoint error of the current batch
:param bad3: percentage of pixels with err > 3px of the current batch
:param duration: time spent to process the current batch
:param batch_sz: current batch size
:param start_time: starting time of the whole evaluation process
:param current_step: current step number
:param total_steps: total steps needed to complete evaluation
:return: None
"""
total_time_elapsed = time.time() - start_time
sample_proc_rate = batch_sz / duration
time_left = (total_steps / current_step - 1.0) * total_time_elapsed
print("Avg EPE: %.2f | Avg Bad3: %.2f | sample/s: %.2f | time elapsed: %s | est time left: %s" % (
epe, bad3, sample_proc_rate, sec_to_hms_str(total_time_elapsed), sec_to_hms_str(time_left)))
def log_event(writer, inputs, outputs, final_err, refined_err, detect_occ, max_disp, scale_list, step):
"""
Log interim results as an instance in a tensorboard event
:param writer: tensorboard writer
:param inputs: inputs to the model
:param outputs: outputs of the model
:param final_err: error metrics based on final_disp for the current batch
:param refined_err: error metrics based on refined_disp0 for the current batch
:param detect_occ: if set to True, the model has been trained to predict occlusion mask
:param max_disp: maximum number of disparities after image downscaling is applied
:param scale_list: list of exponents for all feature scales used in the network, e.g. [0, 3] or [0, 1, 2, 3]
:param step: current step number
:return: None
"""
writer.add_scalar("Final EPE", final_err['epe'], step)
writer.add_scalar("Final Bad3", final_err['bad3'], step)
if final_err['err_map'] is not None:
writer.add_image("Final Error Map", final_err['err_map'][0] / max_disp, step)
writer.add_scalar("Refined EPE", refined_err['epe'], step)
writer.add_scalar("Refined Bad3", refined_err['bad3'], step)
if refined_err['err_map'] is not None:
writer.add_image("Refined Error Map", refined_err['err_map'][0] / max_disp, step)
for k, v in inputs.items():
if k == "gt_disp" or k == "noc_gt_disp":
writer.add_image("input_%s" % k, v[0] / max_disp, step)
elif k != "frame_id" and k != "top_pad" and k != "left_pad":
writer.add_image("input_%s" % k, v[0], step)
for s in scale_list:
max_disp_at_scale = max_disp / (2 ** s)
writer.add_image("refined_disp%d" % s, outputs['refined_disp%d' % s][0] / max_disp_at_scale, step)
if detect_occ:
writer.add_image("occ%d" % s, outputs['occ%d' % s][0], step)
if s == scale_list[-1]:
writer.add_image("prelim_disp", outputs['prelim_disp'][0] / max_disp_at_scale, step)
if s == 0:
writer.add_image("final_disp", outputs['final_disp'][0] / max_disp_at_scale, step)
def handle_nan_err(err_metric):
"""
Handle NaN in error metric. Occurs when no valid pixels found in gt disp
:param err_metric: error metric
:return: None
"""
err_metric['epe'] = 0
err_metric['bad3'] = 0
def evaluate(opts):
"""
Evaluate the model
:param opts: evaluation options
:return: None
"""
log_path = os.path.join(opts.log_dir, opts.model_name)
# checking
assert opts.resized_height % (2 ** opts.feature_downscale) == 0, \
"resized_height not divisible by the given lowest feature scale"
assert opts.resized_width % (2 ** opts.feature_downscale) == 0, \
"resized_width not divisible by the given lowest feature scale"
assert opts.max_disp % (opts.downscale * (2 ** opts.feature_downscale)) == 0, \
"maximum disparity range not divisible by downscaling factor and lowest feature scale"
assert not (opts.baseline and opts.occ_detection), \
"Baseline and occlusion detection cannot be used at the same time"
feature_scale_list = [0]
if opts.multi_step_upsample:
for s in range(1, opts.feature_downscale + 1):
feature_scale_list.append(s) # scale list for gradual upsampling in refinement
else:
feature_scale_list.append(opts.feature_downscale) # scale list for direct upsampling in refinement
model = CRDFusionNet(feature_scale_list, opts.max_disp / opts.downscale, opts.resized_height, opts.resized_width,
opts.baseline, opts.fusion)
if opts.checkpt is not None and os.path.isdir(opts.checkpt):
model.load_model(opts.checkpt)
else:
print("Cannot find checkpoint path. Use randomly initialized weights")
model.init_model()
model.to(opts.device)
dataset_list = {'kitti2015': datasets.Kitti2015Dataset,
'kitti2012': datasets.Kitti2012Dataset,
'SceneFlow': datasets.SceneFlowDataset}
dataset = dataset_list[opts.dataset]
data_path = os.path.join(opts.data_path, opts.dataset)
eval_dataset = dataset(data_path, opts.max_disp, opts.downscale, opts.resized_height, opts.resized_width,
opts.conf_threshold, False, opts.imagenet_norm)
eval_loader = DataLoader(eval_dataset, 1, False, num_workers=opts.num_workers, pin_memory=True,
drop_last=False)
num_eval_samples = len(eval_dataset)
num_valid_samples = num_eval_samples
num_total_steps = num_eval_samples
print("Begin evalutating %s" % opts.model_name)
print("Use checkpt in: %s" % opts.checkpt)
print("Log event and/or predicted disparity maps in %s" % log_path)
print("Log frequency: %d" % opts.log_frequency)
print("Save disp: %r" % opts.save_pred)
print("-------------Input Data Info-------------")
print("Dataset: %s" % opts.dataset)
print("Input size: %d x %d" % (opts.resized_height, opts.resized_width))
print("Downscaling: %d" % opts.downscale)
print("Max disp: %d" % opts.max_disp)
print("Total number of evaluation samples %d" % num_eval_samples)
print("Total number of iterations: %d" % num_total_steps)
print("-------------Ablation Info-------------")
print("Conf threshold: %.2f" % opts.conf_threshold)
print("ImageNet norm: %r" % opts.imagenet_norm)
print("Scale list: %s" % ', '.join(str(s) for s in feature_scale_list))
print("Raw disp fusion in model: %r" % opts.fusion)
print("Using baseline model: %r" % opts.baseline)
print("Occlusion detection: %r" % opts.occ_detection)
print("Occlusion threshold used in post processing: %.2f" % opts.occ_threshold)
print("Post processing: %r" % opts.post_processing)
writer = SummaryWriter(os.path.join(log_path, 'eval'))
current_step = 0
final_err = {'epe': 0, 'bad3': 0, 'err_map': None}
refined_err = {'epe': 0, 'bad3': 0, 'err_map': None}
# for KITTI
final_noc_err = {'epe': 0, 'bad3': 0}
refined_noc_err = {'epe': 0, 'bad3': 0}
print("-------------Start Evaluation-------------")
start_time = time.time()
total_time = 0
model.eval()
with torch.no_grad():
for batch_id, inputs in enumerate(eval_loader):
current_step += 1
for k, v in inputs.items():
if k != "frame_id" and k != "left_pad" and k != "top_pad":
inputs[k] = v.to(opts.device)
batch_start_time = time.time()
outputs = model(inputs['l_rgb'], inputs['r_rgb'], inputs['raw_disp'], inputs['mask'])
if "top_pad" in inputs:
unpad_imgs(inputs, outputs)
if opts.occ_detection and opts.post_processing:
outputs['final_disp'] = post_process(outputs['refined_disp0'], outputs['occ0'], opts.occ_threshold)
else:
outputs['final_disp'] = outputs['refined_disp0']
duration = time.time() - batch_start_time
total_time += duration
batch_num = inputs['l_rgb'].size()[0]
avg_final = {}
avg_refined = {}
avg_final['epe'], avg_final['bad3'], avg_final['err_map'] = compute_disp_error(outputs['final_disp'],
inputs['gt_disp'])
avg_refined['epe'], avg_refined['bad3'], avg_refined['err_map'] = compute_disp_error(
outputs['refined_disp0'], inputs['gt_disp'])
if torch.isnan(avg_final['epe']) or torch.isnan(avg_final['bad3']) or torch.isnan(
avg_refined['epe']) or torch.isnan(avg_refined['bad3']):
# Mostly for SceneFlow where several Test images cause NaN error
handle_nan_err(avg_final)
handle_nan_err(avg_refined)
num_valid_samples -= batch_num
final_err['epe'] += batch_num * avg_final['epe']
final_err['bad3'] += batch_num * avg_final['bad3']
refined_err['epe'] += batch_num * avg_refined['epe']
refined_err['bad3'] += batch_num * avg_refined['bad3']
if 'noc_gt_disp' in inputs: # for KITTI
noc_final_avg_epe, noc_final_avg_bad3, _ = compute_disp_error(outputs['final_disp'],
inputs['noc_gt_disp'])
noc_refined_avg_epe, noc_refined_avg_bad3, _ = compute_disp_error(outputs['refined_disp0'],
inputs['noc_gt_disp'])
final_noc_err['epe'] += batch_num * noc_final_avg_epe
final_noc_err['bad3'] += batch_num * noc_final_avg_bad3
refined_noc_err['epe'] += batch_num * noc_refined_avg_epe
refined_noc_err['bad3'] += batch_num * noc_refined_avg_bad3
if opts.save_pred:
if 'occ0' in outputs:
save_pred(outputs['final_disp'], outputs['occ0'], inputs['frame_id'], log_path)
else:
save_pred(outputs['final_disp'], None, inputs['frame_id'], log_path)
if current_step % opts.log_frequency == 0:
log_time(avg_final['epe'], avg_final['bad3'], duration, batch_num, start_time, current_step,
num_total_steps)
log_event(writer, inputs, outputs, avg_final, avg_refined, opts.occ_detection,
opts.max_disp / opts.downscale, feature_scale_list, current_step)
final_epe = final_err['epe'] / num_valid_samples
final_bad3 = final_err['bad3'] / num_valid_samples
refined_epe = refined_err['epe'] / num_valid_samples
refined_bad3 = refined_err['bad3'] / num_valid_samples
final_noc_epe = final_noc_err['epe'] / num_valid_samples
final_noc_bad3 = final_noc_err['bad3'] / num_valid_samples
refined_noc_epe = refined_noc_err['epe'] / num_valid_samples
refined_noc_bad3 = refined_noc_err['bad3'] / num_valid_samples
frame_rate = num_eval_samples / total_time
print("Refined disparity | average EPE: %.4f | average Bad3: %.4f" % (refined_epe, refined_bad3))
print("Final disparity | average EPE: %.4f | average Bad3: %.4f" % (final_epe, final_bad3))
print("Number of valid samples: %d" % num_valid_samples)
print("Overall framerate (for reference only): %.4f" % frame_rate)
print("-------------For KITTI only-------------")
print("Refined disparity (noc) | average EPE: %.4f | average Bad3: %.4f" % (refined_noc_epe, refined_noc_bad3))
print("Final disparity (noc) | average EPE: %.4f | average Bad3: %.4f" % (final_noc_epe, final_noc_bad3))
if __name__ == "__main__":
evaluate(eval_opts)