-
Notifications
You must be signed in to change notification settings - Fork 1
/
outpaint.py
492 lines (394 loc) · 16.5 KB
/
outpaint.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
import warnings
warnings.filterwarnings('ignore',category=FutureWarning)
import tensorflow as tf
import keras
from keras.layers.convolutional import Conv2D, AtrousConvolution2D
from keras.layers import Activation, Dense, Input, Conv2DTranspose, Dense, Flatten
from keras.layers import Dropout, Concatenate, BatchNormalization, Reshape
from keras.layers.advanced_activations import LeakyReLU
from keras.models import Model, model_from_json
from keras.optimizers import Adam
from keras.layers.convolutional import UpSampling2D
import keras.backend as K
import os
import numpy as np
import PIL
import cv2
import IPython.display
from IPython.display import clear_output
from datetime import datetime
from dataloader import Data, TestData
try:
from keras_contrib.layers.normalization import InstanceNormalization
except Exception:
from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization
# Initialize dataloader
data = Data()
test_data = Data()
# Saves Model in every N minutes
TIME_INTERVALS = 2
SHOW_SUMMARY = True
INPUT_SHAPE = (256, 256, 3)
EPOCHS = 2
BATCH = 1
# 25% i.e 64 width size will be mask from both side
MASK_PERCENTAGE = .25
EPSILON = 1e-9
ALPHA = 0.0004
CHECKPOINT = "checkpoint/"
SAVED_IMAGES = "saved_images/"
def dcrm_loss(y_true, y_pred):
return -tf.reduce_mean(tf.log(tf.maximum(y_true, EPSILON)) + tf.log(tf.maximum(1. - y_pred, EPSILON)))
d_input_shape = (INPUT_SHAPE[0], int(INPUT_SHAPE[1] * (MASK_PERCENTAGE *2)), INPUT_SHAPE[2])
d_dropout = 0.25
DCRM_OPTIMIZER = Adam(0.0001, 0.5)
def d_build_conv(layer_input, filter_size, kernel_size=4, strides=2, activation='leakyrelu', dropout_rate=d_dropout, norm=True):
c = Conv2D(filter_size, kernel_size=kernel_size, strides=strides, padding='same')(layer_input)
if activation == 'leakyrelu':
c = LeakyReLU(alpha=0.2)(c)
if dropout_rate:
c = Dropout(dropout_rate)(c)
if norm == 'inst':
c = InstanceNormalization()(c)
return c
def build_discriminator():
d_input = Input(shape=d_input_shape)
d = d_build_conv(d_input, 32, 5,strides=2, norm=False)
d = d_build_conv(d, 64, 5, strides=2)
d = d_build_conv(d, 64, 5, strides=2)
d = d_build_conv(d, 128, 5, strides=2)
d = d_build_conv(d, 128, 5, strides=2)
flat = Flatten()(d)
fc1 = Dense(1024, activation='relu')(flat)
d_output = Dense(1, activation='sigmoid')(fc1)
return Model(d_input, d_output)
# Discriminator initialization
DCRM = build_discriminator()
DCRM.compile(loss=dcrm_loss, optimizer=DCRM_OPTIMIZER)
if SHOW_SUMMARY:
DCRM.summary()
def gen_loss(y_true, y_pred):
G_MSE_loss = K.mean(K.square(y_pred - y_true))
return G_MSE_loss - ALPHA * tf.reduce_mean(tf.log(tf.maximum(y_pred, EPSILON)))
g_input_shape = (INPUT_SHAPE[0], int(INPUT_SHAPE[1] * (MASK_PERCENTAGE *2)), INPUT_SHAPE[2])
g_dropout = 0.25
GEN_OPTIMIZER = Adam(0.001, 0.5)
def g_build_conv(layer_input, filter_size, kernel_size=4, strides=2, activation='leakyrelu', dropout_rate=g_dropout, norm='inst', dilation=1):
c = AtrousConvolution2D(filter_size, kernel_size=kernel_size, strides=strides,atrous_rate=(dilation,dilation), padding='same')(layer_input)
if activation == 'leakyrelu':
c = Activation("relu")(c)
if dropout_rate:
c = Dropout(dropout_rate)(c)
if norm == 'inst':
c = InstanceNormalization()(c)
return c
def g_build_deconv(layer_input, filter_size, kernel_size=3, strides=2, activation='relu', dropout=0):
d = Conv2DTranspose(filter_size, kernel_size=kernel_size, strides=strides, padding='same')(layer_input)
if activation == 'relu':
d = Activation("relu")(d)
return d
def build_generator():
g_input = Input(shape=g_input_shape)
g1 = g_build_conv(g_input, 64, 5, strides=1)
g2 = g_build_conv(g1, 128, 4, strides=2)
g3 = g_build_conv(g2, 256, 4, strides=2)
g4 = g_build_conv(g3, 512, 4, strides=1)
g5 = g_build_conv(g4, 512, 4, strides=1)
g6 = g_build_conv(g5, 512, 4, strides=1, dilation=2)
g7 = g_build_conv(g6, 512, 4, strides=1, dilation=4)
g8 = g_build_conv(g7, 512, 4, strides=1, dilation=8)
g9 = g_build_conv(g8, 512, 4, strides=1, dilation=16)
g10 = g_build_conv(g9, 512, 4, strides=1)
g11 = g_build_conv(g10, 512, 4, strides=1)
g12 = g_build_deconv(g11, 256, 4, strides=2)
g13 = g_build_deconv(g12, 128, 4, strides=2)
g14 = g_build_conv(g13, 128, 4, strides=1)
g15 = g_build_conv(g14, 64, 4, strides=1)
g_output = AtrousConvolution2D(3, kernel_size=4, strides=(1,1), activation='tanh',padding='same', atrous_rate=(1,1))(g15)
return Model(g_input, g_output)
# Generator Initialization
GEN = build_generator()
GEN.compile(loss=gen_loss, optimizer=GEN_OPTIMIZER)
if SHOW_SUMMARY:
GEN.summary()
IMAGE = Input(shape=g_input_shape)
DCRM.trainable = False
GENERATED_IMAGE = GEN(IMAGE)
CONF_GENERATED_IMAGE = DCRM(GENERATED_IMAGE)
COMBINED = Model(IMAGE, [CONF_GENERATED_IMAGE, GENERATED_IMAGE])
COMBINED.compile(loss=['mse', 'mse'], optimizer=GEN_OPTIMIZER)
def mask_width(img):
image = img.copy()
height = image.shape[0]
width = image.shape[1]
new_width = int(width * MASK_PERCENTAGE)
mask = np.ones([height, new_width, 3])
missing_x = img[:, :new_width]
missing_y = img[:, width - new_width:]
missing_part = np.concatenate((missing_x, missing_y), axis=1)
image = image[:, :width - new_width]
image = image[:, new_width:]
return image, missing_part
def get_masked_images(images):
mask_images = []
missing_images = []
for image in images:
mask_image, missing_image = mask_width(image)
mask_images.append(mask_image)
missing_images.append(missing_image)
return np.array(mask_images), np.array(missing_images)
def get_demask_images(original_images, generated_images):
demask_images = []
for o_image, g_image in zip(original_images, generated_images):
width = g_image.shape[1] // 2
x_image = g_image[:, :width]
y_image = g_image[:, width:]
o_image = np.concatenate((x_image,o_image, y_image), axis=1)
demask_images.append(o_image)
return np.asarray(demask_images)
# Masking, Demasking example
# Note: IPython display gives false colors.
x = data.get_data(1)
# a will be the input and b will be the output for the model
a, b = get_masked_images(x)
border = np.ones([x[0].shape[0], 10, 3]).astype(np.uint8)
print('After masking')
print('\tOriginal Image\t\t\t a \t\t b')
image = np.concatenate((border, x[0],border,a[0],border, b[0], border), axis=1)
IPython.display.display(PIL.Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)))
print("After desmasking: 'b/2' + a + 'b/2' ")
c = get_demask_images(a,b)
IPython.display.display(PIL.Image.fromarray(cv2.cvtColor(c[0], cv2.COLOR_BGR2RGB)))
def save_model():
global DCRM, GEN
models = [DCRM, GEN]
model_names = ['DCRM','GEN']
for model, model_name in zip(models, model_names):
model_path = CHECKPOINT + "%s.json" % model_name
weights_path = CHECKPOINT + "/%s.hdf5" % model_name
options = {"file_arch": model_path,
"file_weight": weights_path}
json_string = model.to_json()
open(options['file_arch'], 'w').write(json_string)
model.save_weights(options['file_weight'])
print("Saved Model")
def load_model():
# Checking if all the model exists
model_names = ['DCRM', 'GEN']
files = os.listdir(CHECKPOINT)
for model_name in model_names:
if model_name+".json" not in files or\
model_name+".hdf5" not in files:
print("Models not Found")
return
global DCRM, GEN, COMBINED, IMAGE, GENERATED_IMAGE, CONF_GENERATED_IMAGE
# load DCRM Model
model_path = CHECKPOINT + "%s.json" % 'DCRM'
weight_path = CHECKPOINT + "%s.hdf5" % 'DCRM'
with open(model_path, 'r') as f:
DCRM = model_from_json(f.read())
DCRM.load_weights(weight_path)
DCRM.compile(loss=dcrm_loss, optimizer=DCRM_OPTIMIZER)
#load GEN Model
model_path = CHECKPOINT + "%s.json" % 'GEN'
weight_path = CHECKPOINT + "%s.hdf5" % 'GEN'
with open(model_path, 'r') as f:
GEN = model_from_json(f.read(), custom_objects={'InstanceNormalization': InstanceNormalization()})
GEN.load_weights(weight_path)
# Combined Model
DCRM.trainable = False
IMAGE = Input(shape=g_input_shape)
GENERATED_IMAGE = GEN(IMAGE)
CONF_GENERATED_IMAGE = DCRM(GENERATED_IMAGE)
COMBINED = Model(IMAGE, [CONF_GENERATED_IMAGE, GENERATED_IMAGE])
COMBINED.compile(loss=['mse', 'mse'], optimizer=GEN_OPTIMIZER)
print("loaded model")
def save_image(epoch, steps):
train_image = test_data.get_data(1)
if train_image is None:
train_image = test_data.get_data(1)
test_image = data.get_data(1)
if test_image is None:
test_image = test_data.get_data(1)
for nc, original in enumerate([train_image, test_image]):
if nc:
print("Predicting with train image")
else:
print("Predicting with test image")
mask_image_original , missing_image = get_masked_images(original)
mask_image = mask_image_original.copy()
mask_image = mask_image / 127.5 - 1
missing_image = missing_image / 127.5 - 1
gen_missing = GEN.predict(mask_image)
gen_missing = (gen_missing + 1) * 127.5
gen_missing = gen_missing.astype(np.uint8)
demask_image = get_demask_images(mask_image_original, gen_missing)
mask_image = (mask_image + 1) * 127.5
mask_image = mask_image.astype(np.uint8)
border = np.ones([original[0].shape[0], 10, 3]).astype(np.uint8)
file_name = str(epoch) + "_" + str(steps) + ".jpg"
final_image = np.concatenate((border, original[0],border,mask_image_original[0],border, demask_image[0], border), axis=1)
if not nc:
cv2.imwrite(os.path.join(SAVED_IMAGES, file_name), final_image)
final_image = cv2.cvtColor(final_image, cv2.COLOR_BGR2RGB)
print("\t1.Original image \t 2.Input \t\t 3. Output")
IPython.display.display(PIL.Image.fromarray(final_image))
print("image saved")
def save_log(log):
with open('log.txt', 'a') as f:
f.write("%s\n"%log)
def train():
start_time = datetime.now()
saved_time = start_time
global MIN_D_LOSS, MIN_G_LOSS, CURRENT_D_LOSS, CURRENT_G_LOSS
for epoch in range(1, EPOCHS):
steps = 1
test = None
while True:
original = data.get_data(BATCH)
if original is None:
break
batch_size = original.shape[0]
mask_image, missing_image = get_masked_images(original)
mask_image = mask_image / 127.5 - 1
missing_image = missing_image / 127.5 - 1
# Train Discriminator
gen_missing = GEN.predict(mask_image)
real = np.ones([batch_size, 1])
fake = np.zeros([batch_size, 1])
d_loss_original = DCRM.train_on_batch(missing_image, real)
d_loss_mask = DCRM.train_on_batch(gen_missing, fake)
d_loss = 0.5 * np.add(d_loss_original, d_loss_mask)
# Train Generator
for i in range(2):
g_loss = COMBINED.train_on_batch(mask_image, [real, missing_image])
log = "epoch: %d, steps: %d, DIS loss: %s, GEN loss: %s, Identity loss: %s" \
%(epoch, steps, str(d_loss), str(g_loss[0]), str(g_loss[2]))
print(log)
save_log(log)
steps += 1
# Save model if time taken > TIME_INTERVALS
current_time = datetime.now()
difference_time = current_time - saved_time
if difference_time.seconds >= (TIME_INTERVALS * 60):
save_model()
save_image(epoch, steps)
saved_time = current_time
clear_output()
load_model()
train()
##############################################################################################################
# Recursive Outpaint
load_model()
def recursive_paint(image, factor=3):
final_image = None
gen_missing = None
for i in range(factor):
demask_image = None
if i == 0:
x, y = get_masked_images([image])
gen_missing = GEN.predict(x)
final_image = get_demask_images(x, gen_missing)[0]
else:
gen_missing = GEN.predict(gen_missing)
final_image = get_demask_images([final_image], gen_missing)[0]
return final_image
images = data.get_data(1)
for i, image in enumerate(images):
image = image / 127.5 - 1
image = recursive_paint(image)
image = (image + 1) * 127.5
image = image.astype(np.uint8)
path = 'recursive/'+str(i)+'.jpg'
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
IPython.display.display(PIL.Image.fromarray(image))
cv2.imshow("1",image)
#################################################################################################################
# Test from URL
load_model()
url = 'https://upload.wikimedia.org/wikipedia/commons/3/33/A_beach_in_Maldives.jpg'
file_name = os.path.basename(url)
import urllib.request
_ = urllib.request.urlretrieve(url, file_name)
print("Downloaded image")
image = cv2.imread(filename)
image = cv2.resize(image, (256,256))
cropped_image = image[:, 65:193]
input_image = cropped_image / 127.5 - 1
input_image = np.expand_dims(input_image, axis=0)
predicted_image = GEN.predict(input_image)
predicted_image = get_demask_images(input_image, predicted_image)[0]
predicted_image = (predicted_image + 1) * 127.5
predicted_image = predicted_image.astype(np.uint8)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
predicted_image = cv2.cvtColor(predicted_image, cv2.COLOR_BGR2RGB)
print('original image')
IPython.display.display(PIL.Image.fromarray(image))
cv2.imshow("original image",image)
print('predicted image')
IPython.display.display(PIL.Image.fromarray(predicted_image))
cv2.imshow("predicted image",predicted_image)
#os.remove(file_name)
##########################################################################################################
#Video Outpainting
load_model()
import cv2
import numpy as np
import os
from os.path import isfile, join
import sys
import shutil
check = os.path.isdir("genvid")
if not check:
os.mkdir("genvid")
path = "./genvid"
cap = cv2.VideoCapture("sample/Original Video.mp4")
i = 0
while(cap.isOpened()):
ret, frame = cap.read()
if ret == False:
break
cv2.imwrite(os.path.join(path,'frame'+str(i)+'.jpg'),frame)
i += 1
cap.release()
cv2.destroyAllWindows()
pathin = "./genvid"
check = os.path.isdir("generated")
if not check:
os.mkdir("generated")
files = [f for f in os.listdir(pathin) if isfile(join(pathin, f))]
for im in range(0,len(files)):
path = "genvid/frame"+str(im)+".jpg"
path1 = "./generated/"
image = cv2.imread(path)
image = cv2.resize(image, (256,256))
cropped_image = image[:, 65:193]
input_image = cropped_image / 127.5 - 1
input_image = np.expand_dims(input_image, axis=0)
predicted_image = GEN.predict(input_image)
predicted_image = get_demask_images(input_image, predicted_image)[0]
predicted_image = (predicted_image + 1) * 127.5
predicted_image = predicted_image.astype(np.uint8)
cv2.imwrite(os.path.join(path1,'frame'+str(im)+'.jpg'),predicted_image)
def convert(pathin,pathout,fps):
frame_array = []
files = [f for f in os.listdir(pathin) if isfile(join(pathin, f))]
for i in range(len(files)):
filename = pathin + 'frame'+str(i)+'.jpg'
img = cv2.imread(filename)
height, width, layers = img.shape
size = (width,height)
print(filename)
frame_array.append(img)
out = cv2.VideoWriter(pathout,cv2.VideoWriter_fourcc(*'DIVX'),fps,size)
for i in range(len(frame_array)):
out.write(frame_array[i])
out.release()
def main():
pathin = './generated/'
pathout = 'video2.mp4'
fps = 25.0
convert(pathin,pathout,fps)
main()
shutil.rmtree("genvid")
shutil.rmtree("generated")