-
Notifications
You must be signed in to change notification settings - Fork 1
/
configuration_radarscenes_cnn.yml
74 lines (65 loc) · 2.26 KB
/
configuration_radarscenes_cnn.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
RANDOM:
seed: 1234
DIRECTORIES:
dataset_dir: 'dataset/RadarScenesData/data'
model_weights_dir: 'model_weights/cnn'
weights_name: 'grid_based_detector.pt'
DATA_SELECTION_PARAM:
temporal_window_size: 25 # accumulate measurements from 25 frames (accumulation for approx 500 ms)
DATASET:
# all of the radar measurement attributes that 'nuscenes' dataset provide (just for reference)
radarmeas_attributes_all:
['timestamp', 'range_sc', 'azimuth_sc', 'rcs', 'vr', 'vr_compensated',
'x_cc', 'y_cc', 'x_seq', 'y_seq', 'uuid', 'track_id', 'label_id' ]
# a subset of radar dataset attributes that are actually utilized (just for reference)
# some are used to compute node features, and some are used to compute labels
radarmeas_attributes_selected:
[ 'rcs', 'vr_compensated', 'x_cc', 'y_cc', 'track_id', 'label_id' ]
OBJECT_CATEGORIES:
OBJECT_CLASS: ['CAR', 'PEDESTRIAN', 'PEDESTRIAN_GROUP', 'TWO_WHEELER', 'LARGE_VEHICLE', 'NONE', 'FALSE', 'STATIC']
OBJECT_CLASS_WEIGHTS: [0.8, 1.0, 1.0, 1.0, 0.8, 0.7, 0.7, 0.5]
OBJECT_CLASS_DYN: ['CAR', 'PEDESTRIAN', 'PEDESTRIAN_GROUP', 'TWO_WHEELER', 'LARGE_VEHICLE', 'NONE', 'FALSE']
OBJECT_CLASS_DYN_WEIGHTS: [1.0, 1.0, 1.0, 1.0, 1.0, 0.7, 0.7]
GRID_LIMITS:
max_x: 100
min_x: 0
max_y: 50
min_y: -50
min_sigma_x: 0.5
max_sigma_x: 2
min_sigma_y: 0.5
max_sigma_y: 2
dx: 0.5
dy: 0.5
CNN_ARCHITECTURE:
input_image_dimension: 3
base_stem_channels: [32, 64]
base_kernel_sizes: [11, 7]
bottleneck_number_of_blocks: [2, 2, 2, 2]
bottleneck_stem_channels: [128, 256, 512, 1024]
bottleneck_width_channels: 64
bottleneck_kernel_size: 3
neck_out_channels: 64
neck_kernel_size: 3
head_stem_channels: [64]
head_ffn_channels: [64]
head_kernel_size: 3
augmented_features_for_feed_forward_block: ['vr', 'rcs']
reg_offset: ['dx', 'dy']
reg_mu: [0, 0]
reg_sigma: [8, 4]
activation: 'leakyrelu'
conv_type: 'conv2d'
LOSS_WEIGHTS:
loss_cls: 1.0
loss_reg: 10.0
OPTIMIZATION:
optim: sgd
max_training_iterations: 100000
learning_rate: 0.001
weight_decay: 0.0001
DATASET:
num_training_samples: 200000 # to use all the samples put -1
num_validation_samples: 1000 # to use all the samples put -1
shuffle_training_samples: True
shuffle_validation_samples: True