-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathunit03.tex
444 lines (423 loc) · 24.4 KB
/
unit03.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
\providecommand{\main}{..}
\documentclass[\main/notes.tex]{subfiles}
\begin{document}
\setcounter{chapter}{2}
\chapter{Vectors in 2-Space and 3-Space}
\section{Introduction to Vectors}
\begin{definition}{Vector}
A quantity with both magnitude and direction. Can be written in bold, for example, $\mathbf{v}$, or as $\overrightarrow{v}$.
A vector that has an initial point $A$ and terminal point $B$ is written:
\begin{align*}
\overrightarrow{v} = \overrightarrow{AB}
\end{align*}
Vectors with the same length and direction are said to be \concept{equivalent}.
\end{definition}
\begin{sidenote}{Vectors whose initial point is not at the origin}
If $\overrightarrow{P_{1}P_{2}}$ denotes the vector with initial point $P_{1}(x_{1}, y_{1}, z_{1})$ and terminal point $P_{2}(x_{2}, y_{2}, z_{2})$, then the components of the vector are:
\begin{align*}
\overrightarrow{P_{1}P_{2}} = \left\langle x_{2} - x_{1}, y_{2} - y_{1}, z_{2} - z_{1}\right\rangle
\end{align*}
\end{sidenote}
\begin{sidenote}{Vector Algebraic Operations}
If $\mathbf{u}$, $\mathbf{v}$ and $\mathbf{w}$ are vectors in $\mathbb{R}^{n}$, and if $k$ and $m$ are scalars, then:
\begin{enumerate}[label=(\alph*)]
\item $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
\item $(\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
\item $\mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u}$
\item $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
\item $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + kv$
\item $(k + m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$
\item $k(m\mathbf{u}) = km(\mathbf{u})$
\end{enumerate}
\end{sidenote}
\begin{theorem}{Linear Combination}
If $\mathbf{w}$ is a vector in $\mathbb{R}^{n}$, then $\mathbf{w}$ is called a \concept{linear combination} of the vectors $\mathbf{v_{1}}$, $\mathbf{v_{2}}$, $\ldots$, $\mathbf{v_{r}}$ in $\mathbb{R}^{n}$ if it can be expressed in the form:
\begin{align*}
\mathbf{w} = k_{1}\mathbf{v_{1}} + k_{2}\mathbf{v_{2}} + \cdots + k_{r}\mathbf{v_{r}}
\end{align*}
where $k_{1}$, $k_{2}$, $k_{r}$ are scalars, called the \concept{coefficients} of the linear combination.
\end{theorem}
\section{Norm of a Vector and Distance}
\begin{definition}{Norm of a Vector}
If $\mathbf{v} = \left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle$ is a vector in $\mathbb{R}^{n}$, then the \concept{norm} of $\mathbf{v}$, also called the \concept{magnitude} or \concept{length} of $\mathbf{v}$, is written $\left\lVert \mathbf{v}\right\rVert$, and is defined by:
\begin{align*}
\left\lVert \mathbf{v}\right\rVert = \sqrt{v_{1}^{2} + v_{2}^{2} + \cdots + v_{n}^{2}}
\end{align*}
\end{definition}
\begin{sidenote}{Properties of the Norm}
If $\mathbf{v}$ is a vector in $\mathbb{R}^{n}$, and $k$ is any scalar, then:
\begin{enumerate}[label=(\alph*)]
\item $ \left\lVert \mathbf{v}\right\rVert \geq 0$
\item $ \left\lVert \mathbf{v}\right\rVert = 0$ iff $\mathbf{v} = \mathbf{0}$
\item $ \left\lVert k\mathbf{v}\right\rVert = \left\lvert k\right\rvert \cdot \left\lVert \mathbf{v}\right\rVert$
\end{enumerate}
\end{sidenote}
\begin{definition}{Unit Vector}
A vector with the norm $1$. If $\mathbf{u}$ denotes the unit vector, and $\mathbf{v}$ is some vector, then the unit vector in the same direction can be calculated as:
\begin{align*}
\mathbf{u} = \frac{1}{\left\lVert \mathbf{v}\right\rVert} \cdot \mathbf{v}
\end{align*}
\end{definition}
\begin{sidenote}{The standard unit vectors}
The vectors in the positive direction of the coordinate axes are called \concept{standard unit vectors}. These are denoted as:
\begin{alignat*}{3}
\mathbf{i} &= \left\langle 1, 0, 0\right\rangle & \qquad
\mathbf{j} &= \left\langle 0, 1, 0\right\rangle & \qquad
\mathbf{k} &= \left\langle 0, 0, 1\right\rangle
\end{alignat*}
\end{sidenote}
\begin{definition}{Distance in $\mathbb{R}^{n}$}
If $\mathbf{u} = (u_{1}, u_{2}, \ldots, u_{n}) $ and $mathbf{v} = (v_{1}, v_{2}, \ldots, v_{n})$ are points in $\mathbb{R}^{n}$, then the distance between $\mathbf{u}$ and $\mathbf{v}$ is written $d(\mathbf{u}, \mathbf{v})$, and defined to be:
\begin{align*}
d(\mathbf{u}, \mathbf{v}) = \left\lVert u - v\right\rVert
= \sqrt{(u_{1} - v_{1})^{2} + (u_{2} - v_{2})^{2} + \cdots + (u_{n} - v_{n})^{2}}
\end{align*}
\end{definition}
\section{Dot Product}
\begin{definition}{Dot Product (Angle)}
If $\mathbf{u}$ and $\mathbf{v}$ are nonzero vectors in $\mathbb{R}^{2}$ or $\mathbb{R}^{3}$, and if $\theta$ is the angle between $\mathbf{u}$ and $\mathbf{v}$, then the \concept{dot product} (also called the \concept{Euclidean inner product}) of $\mathbf{u}$ and $\mathbf{v}$ is denoted $\mathbf{u} \cdot \mathbf{v}$, and is defined as:
\begin{align*}
\mathbf{u} \cdot \mathbf{v} &= \left\lVert \mathbf{u}\right\rVert \left\lVert \mathbf{v}\right\rVert \cos \theta
\end{align*}
If $\mathbf{u} = \mathbf{0}$, or $\mathbf{v} = \mathbf{0}$, then $\mathbf{u} \cdot \mathbf{v} = 0$.
\end{definition}
\begin{sidenote}{The sign of the dot product and the angle}
\begin{itemize}
\item $\theta$ is acute if $\mathbf{u} \cdot \mathbf{v} > 0$
\item $\theta$ is obtuse if $\mathbf{u} \cdot \mathbf{v} < 0$
\item $\theta$ is $\pi/2$ if $\mathbf{u} \cdot \mathbf{v} = 0$
\end{itemize}
\end{sidenote}
\begin{definition}{Component form of the dot product}
The dot product can be represented as the sum of the products of the corresponding components.
If $\mathbf{u} = \left\langle u_{1}, u_{2}, \ldots, u_{n}\right\rangle$ and $\mathbf{v} = \left\langle v_{1}, v_{2}, \ldots, v_{n}\right\rangle$ are vectors in $\mathbb{R}^{n}$, then the \concept{dot product} is denoted $\mathbf{u} \cdot \mathbf{v}$, and is defined as:
\begin{align*}
\mathbf{u} \cdot \mathbf{v} = u_{1}v_{1} + u_{2}v_{2} + \cdots + u_{n}v_{n}
\end{align*}
\end{definition}
\begin{theorem}{Parallelogram Equation for Vectors}
The sum of the squarea of the diagonals is equal to the sum of the squares of the four sides.
If $\mathbf{u}$ and $\mathbf{v}$ are vectors in $R^{n}$, then
\begin{align*}
\left\lVert \mathbf{u} + \mathbf{v}\right\rVert^{2} + \left\lVert \mathbf{u} - \mathbf{v}\right\rVert^{2} = 2 \biggl(\left\lVert \mathbf{u} \right\rVert^{2} + \left\lVert\mathbf{v}\right\rVert^{2}\biggr)
\end{align*}
\end{theorem}
\begin{theorem}{Dot Product and the Norm}
If $\mathbf{u}$ and $\mathbf{v}$ are vectors in $\mathbb{R}^{n}$, then
\begin{align*}
\mathbf{u} \cdot \mathbf{v} = \frac{1}{4}\left\lVert \mathbf{u} + \mathbf{v}\right\rVert^{2} - \frac{1}{4}\left\lVert \mathbf{u} - \mathbf{v}\right\rVert^{2}
\end{align*}
\end{theorem}
\begin{definition}{Orthogonality}
Two nonzero vectors $\mathbf{u}$ and $\mathbf{v}$ in $\mathbb{R}^{n}$ are said to be \concept{orthogonal} (or \concept{perpendicular}) if $\mathbf{u} \cdot \mathbf{v} = 0$. The zero vector in $\mathbb{R}^{n}$ is orthogonal to every vector in $\mathbb{R}^{n}$.
\end{definition}
\section{Projections}
\begin{definition}{Orthogonal Projections}
Decompose a vector $\mathbf{u}$ into a sum of two terms: a scalar multiple of a specified nonzero vector $\mathbf{a}$, and the other term being orthogonal to $\mathbf{a}$.
If $\mathbf{u}$ and $\mathbf{a}$ are vectors in $\mathbb{R}^{2}$ so that their initial points coincide at a point $Q$, then $\mathbf{u}$ can be decomposed by:
\begin{enumerate}
\item Drop a perpendicular from the tip of $\mathbf{u}$ to the line through $\mathbf{a}$.
\item Construct the vector $\mathbf{w_{1}}$ from $Q$ to the foot of the perpendicular
\item Construct the vector $\mathbf{w_{2}} = \mathbf{u} - \mathbf{w_{1}}$
\end{enumerate}
\begin{center}
\includegraphics[width=0.85\textwidth]{\main/images/unit03/projection_example.png}
\end{center}
\end{definition}
\begin{theorem}{Projection Theorem}
If $\mathbf{u}$ and $\mathbf{a}$ are vectors in $\mathbb{R}^{n}$, and if $\mathbf{a} \neq 0$, then $\mathbf{u}$ can be expressed in exactly one way in the form $\mathbf{u} = \mathbf{w_{1}} + \mathbf{w_{2}}$, where $\mathbf{w_{1}}$ is a scalar multiple of $\mathbf{a}$, and $\mathbf{w_{2}}$ is orthogonal to $\mathbf{a}$.
\end{theorem}
\begin{definition}{Orthogonal projection of $\mathbf{u}$ on $\mathbf{a}$}
The vector $\mathbf{w_{1}}$ above is called the \concept{orthogonal projection of $\mathbf{u}$ on $\mathbf{a}$}, or the \concept{vector component of $\mathbf{u}$ along $\mathbf{a}$}. It is commonly written $\proj_{\mathbf{a}}\mathbf{u}$.
\begin{align*}
\proj_{\mathbf{a}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{a}}{\left\lVert \mathbf{a}\right\rVert^{2}}\mathbf{a}
\end{align*}
\end{definition}
\begin{definition}{Vector component of $\mathbf{u}$ orthogonal to $\mathbf{a}$}
The vector $\mathbf{w_{2}}$ above is called the \concept{vector component of $\mathbf{u}$ orthogonal to $\mathbf{a}$}.
\begin{align*}
\mathbf{w_{2}} &= \mathbf{u} - \proj_{\mathbf{a}}\mathbf{u}\\
&= \mathbf{u} - \frac{\mathbf{u} \cdot \mathbf{a}}{\left\lVert \mathbf{a}\right\rVert^{2}}\mathbf{a}
\end{align*}
\end{definition}
\pagebreak
\begin{definition}{The norm of the orthogonal projection}
\begin{align*}
\left\lVert \proj_{\mathbf{a}}\mathbf{u}\right\rVert = \frac{\left\lvert \mathbf{u} \cdot \mathbf{a}\right\rvert }{\left\lVert \mathbf{a}\right\rVert}
\end{align*}
In terms of angles, if $\theta$ denotes the angle between $\mathbf{u}$ and $\mathbf{a}$, then $\mathbf{u} \cdot \mathbf{a} = \left\lVert \mathbf{u}\right\rVert \left\lVert \mathbf{a}\right\rVert \left\lvert \cos \theta\right\rvert $.
So,
\begin{align*}
\left\lVert \proj_{\mathbf{a}}\mathbf{u}\right\rVert = \left\lVert \mathbf{u}\right\rVert \cdot \left\lvert \cos \theta\right\rvert
\end{align*}
\end{definition}
\begin{theorem}{Pythagoras}
If $\mathbf{u}$ and $\mathbf{v}$ are orthogonal vectors in $\mathbb{R}^{n}$, then:
\begin{align*}
\left\lVert \mathbf{u} + \mathbf{v}\right\rVert^{2} = \left\lVert \mathbf{u}\right\rVert^{2} + \left\lVert \mathbf{v}\right\rVert^{2}
\end{align*}
\end{theorem}
\begin{definition}{Distances Between Points}
In $\mathbb{R}^{2}$, the distance $D$ between the point $P_{0}(x_{0}, y_{0})$ and the line $ax + by + c = 0$ is:
\begin{align*}
D = \frac{\left\lvert ax_{0} + by_{0} + c\right\rvert }{\sqrt{a^{2} + b^{2}}}
\end{align*}
In $\mathbb{R}^{3}$, the distance $D$ between the point $P_{0}(x_{0}, y_{0}, z_{0})$ and the plane $ax + by + cz + d = 0$ is:
\begin{align*}
D = \frac{\left\lvert ax_{0} + by_{0} + cz_{0} + d\right\rvert }{\sqrt{a^{2} + b^{2} + c^{2}}}
\end{align*}
\end{definition}
\section{Cross Product}
\begin{definition}{Cross Product}
If $\mathbf{u} = \left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v} = \left\langle v_{1}, v_{2}, v_{3}\right\rangle$ are vectors in $3$-space, then the \concept{cross product} $\mathbf{u} \times \mathbf{v}$ is the \emph{vector} defined by
\begin{align*}
\mathbf{u} \times \mathbf{v} = \left\langle u_{2}v_{3} = u_{3}v_{2}, u_{3}v_{1} - u_{1}v_{3}, u_{1}v_{2} - u_{2}v_{1}\right\rangle
\end{align*}
In determinant notation, this can be written:
\begin{align*}
\mathbf{u} \times \mathbf{v} = \left( \begin{vmatrix}
u_{2} & u_{3}\\
v_{2} & v_{3}
\end{vmatrix}, - \begin{vmatrix}
u_{1} & u_{3}\\
v_{1} & v_{3}
\end{vmatrix}, \begin{vmatrix}
u_{1} & u_{2}\\
v_{1} & v_{2}
\end{vmatrix}\right)
\end{align*}
Using the standard unit vectors, it can also be represented symbolically in the form:
\begin{align*}
\mathbf{u} \times \mathbf{v} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k}\\
u_{1} & u_{2} & u_{3}\\
v_{1} & v_{2} & v_{3}
\end{vmatrix}
= \begin{vmatrix}
u_{2} & u_{3}\\
v_{2} & v_{3}
\end{vmatrix} \mathbf{i} -
\begin{vmatrix}
u_{1} & u_{3}\\
v_{1} & v_{3}
\end{vmatrix} \mathbf{j} +
\begin{vmatrix}
u_{2} & u_{3}\\
v_{2} & v_{3}
\end{vmatrix} \mathbf{k}
\end{align*}
\end{definition}
\begin{sidenote}{Relationships between dot product and cross product}
If $\mathbf{u}$, $\mathbf{v}$, and $\mathbf{w}$ are vectors in $3$-space, then
\begin{enumerate}[label=(\alph*)]
\item $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = 0$
\item $\mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = 0$
\item $\left\lVert \mathbf{u} \times \mathbf{v}\right\rVert^{2} = \left\lVert \mathbf{u}\right\rVert^{2}\left\lVert \mathbf{v}\right\rVert^{2} - (\mathbf{u} \cdot \mathbf{v})^{2}$
\item $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \times \mathbf{v})\mathbf{w}$
\item $(\mathbf{u} \times \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{v} \times \mathbf{w})\mathbf{u}$
\end{enumerate}
\end{sidenote}
\begin{sidenote}{Properties of the Cross Product}
If $\mathbf{u}$, $\mathbf{v}$, and $\mathbf{w}$ are vectors in $3$-space, and $k$ is any scalar, then
\begin{enumerate}[label=(\alph*)]
\item $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$
\item $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$
\item $(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$
\item $k(\mathbf{u} \times \mathbf{v}) = (k \mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (k \mathbf{v})$
\item $\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$
\item $\mathbf{u} \times \mathbf{u} = \mathbf{0}$
\end{enumerate}
\end{sidenote}
\subsection{Geometric Interpretation of the Cross Product}
\begin{theorem}{Geometric Interpretation of the Cross Product}
If $\theta$ denotes the angle between two vectors $\mathbf{u}$ and $\mathbf{v}$, then
\begin{align*}
\left\lVert \mathbf{u} \times \mathbf{v}\right\rVert = \left\lVert \mathbf{u}\right\rVert \left\lVert \mathbf{v}\right\rVert \sin \theta
\end{align*}
\end{theorem}
\begin{definition}{Area of a Parallelogram}
If $\mathbf{u}$ and $\mathbf{v}$ are vectors in $3$-space, then $\left\lVert \mathbf{u} \times \mathbf{v}\right\rVert$ is equal to the area of the parallelogram determined by $\mathbf{u}$ and $\mathbf{v}$.
\begin{align*}
\Area \square = \left\lVert \mathbf{u} \times \mathbf{v}\right\rVert
\end{align*}
\end{definition}
\begin{definition}{Area of a Triangle}
If $\mathbf{u}$ and $\mathbf{v}$ are vectors in $3$-space, then the area of the triangle is equal to half the area of the parallelogram.
\begin{align*}
\Area \triangle = \frac{1}{2} \left\lVert \mathbf{u} \times \mathbf{v}\right\rVert
\end{align*}
\end{definition}
\begin{definition}{Scalar Triple Product}
If $\mathbf{u}$, $\mathbf{v}$ and $\mathbf{w}$ are vectors in $3$-space, then
\begin{align*}
\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})
\end{align*}
is called the \concept{scalar triple product} of $\mathbf{u}$, $\mathbf{v}$ and $\mathbf{w}$.
This can be calculated as:
\begin{align*}
\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix}
u_{1} & u_{2} & u_{3}\\
v_{1} & v_{2} & v_{3}\\
w_{1} & w_{2} & w_{3}
\end{vmatrix}
\end{align*}
\end{definition}
\subsection{Geometric Interpretation of Determinants}
\begin{definition}{Area of the Parallelogram in $2$-space}
The absolute value of the determinant
\begin{align*}
\begin{vmatrix}
u_{1} & u_{2}\\
v_{1} & v_{2}
\end{vmatrix}
\end{align*}
is equal to the area of the parallelogram in $2$-space determined by the vectors $\mathbf{u} = \left\langle u_{1}, u_{2}\right\rangle $ and $\mathbf{v} = \left\langle v_{1}, v_{2}\right\rangle $
\end{definition}
\begin{definition}{Volume of the Parallelopiped}
The absolute value of the determinant
\begin{align*}
\begin{vmatrix}
u_{1} & u_{2} & u_{3}\\
v_{1} & v_{2} & v_{3}\\
w_{1} & w_{2} & w_{3}
\end{vmatrix}
\end{align*}
is equal to the volume of the parallelopiped in $3$-space determined by the vectors $\mathbf{u} = \left\langle u_{1}, u_{2}, u_{3}\right\rangle $, $\mathbf{v} = \left\langle v_{1}, v_{2}, v_{3}\right\rangle $, and $\mathbf{w} = \left\langle w_{1}, w_{2}, w_{3}\right\rangle $
This is equal to the absolute of the scalar triple product.
\end{definition}
\begin{definition}{Vectors on the same plane}
If the vectors $\mathbf{u} = \left\langle u_{1}, u_{2}, u_{3}\right\rangle $, $\mathbf{v} = \left\langle v_{1}, v_{2}, v_{3}\right\rangle $, and $\mathbf{w} = \left\langle w_{1}, w_{2}, w_{3}\right\rangle $ have the same initial point, then they lie on the same plane iff
\begin{align*}
\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix}
u_{1} & u_{2} & u_{3}\\
v_{1} & v_{2} & v_{3}\\
w_{1} & w_{2} & w_{3}
\end{vmatrix} = 0
\end{align*}
\end{definition}
\pagebreak
\section{Lines and Planes in 3-Space}
\subsection{Point Normal Equations}
\begin{itemize}
\item A line is uniquely defined by its slope, and one of its points.
\item A plane is uniquely defined by its `inclination', and one of its points.
\end{itemize}
\begin{definition}{Normal Vector}
Used to specify a slope or inclination. A nonzero vector, normally written $\mathbf{n}$, that is orthogonal to the line or plane.
\end{definition}
\begin{example}
Suppose a line goes through the point $P_{0}(x_{0}, y_{0})$, and has the normal $\mathbf{n} = \left\langle a, b\right\rangle$.
Suppose a plane goes through the point $P_{0}(x_{0}, y_{0}, z_{0})$, and has the normal $\mathbf{n} = \left\langle a, b, c\right\rangle$.
Then both the line and plane are represented by the vector equation:
\begin{align*}
\mathbf{n} \cdot \overrightarrow{P_{0}P} = 0
\end{align*}
For the line:
\begin{alignat*}{3}
& & \overrightarrow{P_{0}P} &= \left\langle x - x_{0}, y - y_{0}\right\rangle\\
& &\mathbf{n} \cdot \overrightarrow{P_{0}P} &= 0\\
& \qquad \Rightarrow \quad &\mathbf{n} \left\langle x - x_{0}, y - y_{0}\right\rangle &= 0\\
& \qquad \Rightarrow \quad& \left\langle a, b\right\rangle \left\langle x - x_{0}, y - y_{0}\right\rangle &= 0\\
& \qquad \Rightarrow \quad & a(x - x_{0}) + b(y - y_{0}) &= 0
\end{alignat*}
For the plane:
\begin{alignat*}{3}
& & \overrightarrow{P_{0}P} &= \left\langle x - x_{0}, y - y_{0}, z - z_{-0}\right\rangle\\
& &\mathbf{n} \cdot \overrightarrow{P_{0}P} &= 0\\
& \qquad \Rightarrow \quad &\mathbf{n} \left\langle x - x_{0}, y - y_{0}, z - z_{0}\right\rangle &= 0\\
& \qquad \Rightarrow \quad & \left\langle a, b, c\right\rangle \left\langle x - x_{0}, y - y_{0}, z - z_{0}\right\rangle &= 0\\
& \qquad \Rightarrow \quad & a(x - x_{0}) + b(y - y_{0}) + c(z - z_{0}) &= 0
\end{alignat*}
\end{example}
\begin{theorem}{General Equations}
\begin{enumerate}[label=(\alph*)]
\item If $a$ and $b$ are both nonzero constants, then an equation of the form:
\begin{align*}
ax + by + c = 0
\end{align*}
represents a line in $\mathbb{R}^{2}$ with normal $\mathbf{n} = \left\langle a, b\right\rangle$.
\item If $a$, $b$, and $c$ are all nonzero constants, then an equation of the form:
\begin{align*}
ax + by + cz + d = 0
\end{align*}
represents a plane in $\mathbb{R}^{3}$ with normal $\mathbf{n} = \left\langle a, b, c\right\rangle$.
\end{enumerate}
\end{theorem}
\subsection{Parametric Equations}
\begin{definition}{Parametric Equation of a Line}
Let $L$ be the line in $\mathbb{R}^{n}$ that contains the point $\mathbf{x_{0}}$, and is parallel to the nonzero vector $\mathbf{v}$. Then the equation of the line through $x_{0}$ that is parallel to $\mathbf{v}$ is:
\begin{align*}
\mathbf{x} = \mathbf{x_{0}} + t\mathbf{v}
\end{align*}
The value $t$ is called a parameter, and as it varies from $-\infty$ to $\infty$, it traces out the line $L$.
If the point $\mathbf{x_{0}} = \mathbf{0}$, then the line passes through the origin, and the equation has the form:
\begin{align*}
\mathbf{x} = t\mathbf{v}
\end{align*}
\end{definition}
\begin{definition}{Parametric Equation of a Plane}
Let $W$ be the plane in $\mathbb{R}^{n}$ that contains the point $\mathbf{x_{0}}$, and is parallel to the noncollinear vectors $\mathbf{v_{1}}$ and $\mathbf{v_{2}}$. Then the equation of the plane through $x_{0}$ that is parallel to $\mathbf{v_{1}}$ and $\mathbf{v_{2}}$ is:
\begin{align*}
\mathbf{x} = \mathbf{x_{0}} + t_{1}\mathbf{v_{1}} + t_{1}\mathbf{v_{2}}
\end{align*}
If the point $\mathbf{x_{0}} = \mathbf{0}$, then the plane passes through the origin, and the equation has the form:
\begin{align*}
\mathbf{x} = t_{1}\mathbf{v_{1}} + t_{2}\mathbf{v_{2}}
\end{align*}
\end{definition}
\subsection[General Geometry]{General Geometry in $\mathbb{R}^{n}$}
\begin{sidenote}{Line Through Two Points in $\mathbb{R}^{n}$}
If $\mathbf{x_{0}}$ and $\mathbf{x_{1}}$ are distinct points in $\mathbb{R}^{n}$, then the line determined by these points is parallel to the vector $\mathbf{v} = \mathbf{x_{1}} - \mathbf{x_{2}}$. These can then be represented as:
\begin{align*}
\mathbf{x} &= \mathbf{x_{0}} + t(\mathbf{x_{1}} - \mathbf{x_{0}})\\
\mathbf{x} &= (1 - t)\mathbf{x_{0}} + t\mathbf{x_{1}}
\end{align*}
\end{sidenote}
\begin{theorem}{Line Segment}
If $\mathbf{x_{0}}$ and $\mathbf{x_{1}}$ are vectors in $\mathbb{R}^{n}$, then using the above, and restricting $t$ gives the line segment from $\mathbf{x_{0}}$ to $\mathbf{x_{1}}$.
\begin{align*}
\mathbf{x} &= \mathbf{x_{0}} + t(\mathbf{x_{1}} - \mathbf{x_{0}}) \tag*{$(0 \leq t \leq 1)$}\\
\mathbf{x} &= (1 - t)\mathbf{x_{0}} + t\mathbf{x_{1}} \tag*{$(0 \leq t \leq 1)$}
\end{align*}
\end{theorem}
\begin{theorem}{Solution and Orthogonality}
If $A$ is an $m \times n$ matrix, then the solution set of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$ consists of all vectors in $\mathbb{R}^{n}$ that are orhtogonal to every row vector in $A$.
\end{theorem}
\subsection{Equations Summary}
\begin{sidenote}{Equations of a Plane}
Let $\mathbf{n} = \left\langle a, b, c\right\rangle$ be a vector \emph{orthogonal} to the plane, and $\mathbf{r_{0}} = (x_{0}, y_{0}, z_{0})$ be a point on the plane. Let $\mathbf{v_{1}}$ and $\mathbf{v_{2}}$ be vectors parallel to the plane.
\begin{center}
\begin{tblr}{ll}
Point Normal: & $a(x - x_{0}) + b(y - y_{0}) + c(z - z_{0}) = 0$\\
General Form: & $ax + by + cz + d = 0$\\
Vector Form: & $\mathbf{n} \cdot (\mathbf{r} - \mathbf{r_{0}})$ \nl
$(a, b, c)(x - x_{0}, y - y_{0}, z - z_{0}) = 0$\\
Parametric Form: & $\mathbf{r} = \mathbf{r_{0}} + t_{1}\mathbf{v_{1}} + t_{2}\mathbf{v_{2}}$
\end{tblr}
\end{center}
\end{sidenote}
\begin{sidenote}{Equations of a Line in $2$-space}
Let $\mathbf{n} = \left\langle a, b, c\right\rangle$ be a vector \emph{parallel} to the line, and $\mathbf{r_{0}} = (x_{0}, y_{0}, z_{0})$ be a point on the line.
\begin{center}
\begin{tblr}{ll}
Point Normal: & $a(x - x_{0}) + b(y - y_{0}) = 0$\\
General Form: & $ax + by + c = 0$\\
Vector Form: & $\mathbf{n} \cdot (\mathbf{r} - \mathbf{r_{0}}) = 0$ \nl
$(a, b)(x - x_{0}, y - y_{0}) = 0$\\
Parametric Form: & $\mathbf{r} = \mathbf{r_{0}} + t\mathbf{n}$ \nl
$ (x, y) = (x_{0}, y_{0}) + t(a, b)$\\
Parametric Equations: & $x = x_{0} + at$ \nl
$y = y_{0} + bt$
\end{tblr}
\end{center}
\end{sidenote}
\subsection{Symmetric Equations}
\begin{definition}{Symmetric Equation}
The \concept{symmetric equations} of a line $L$ in $3$-space are given by:
\begin{align*}
\frac{x - x_{0}}{a} = \frac{y - y_{0}}{b} = \frac{z - z_{0}}{c}
\end{align*}
where $(x_{0}, y_{0}, z_{0})$ is a point passing through the line, and $\mathbf{v} = \left\langle a, b, c\right\rangle $ is a vector parallel to the line. This vector is called the \concept{direction vector}.
\end{definition}
\rulechapterend
\end{document}