Research on finitely generated subvarieties of finitely generated varieties
Characterize the finitely generated varieties that have (or don't have) finitely generated proper subvarieties.
In [A-M], Aichinger and Mayr solve the problem in case
Here we consider case in which
One such algebra is the groupoid
* | 0 | 1 | 2 | 3 |
---|---|---|---|---|
0 | 0 | 2 | 1 | 1 |
1 | 0 | 1 | 3 | 2 |
2 | 0 | 3 | 2 | 1 |
3 | 1 | 2 | 1 | 3 |
The variety
Every algebra is a subdirect product of subdirectly irreducible (SI) algebras, so varieties are generated by their SI members. To find a proper subvariety of
To begin we will try to identify the SI's of
First, recall the general form of an algebra in
In our example, the only nontrivial proper subalgebra of
Let
Let
Then
(Why don't we simply write
Let
Now,
TODO: check!
Recall, [Theorem 2.3, K] says that if
-
$\mathbf A$ has a unique absorbing element. -
$\mathbf A$ is abelian. - Every finite power of
$\mathbf A$ is skew-free.
In our example, neither 1 nor 2 holds, so every finite power of
TODO: What does this tell us about
Let
Let
By [Theorem 10.1, F-M], if
Note that, in our example,
So, we have two possibilities: Either
-
$\alpha \geq \mu$ , in which case$[\mu, \mu] = 0$ (i.e.,$\mu$ is abelian), or -
$\alpha = 0$ , in which case$\mathbf B \in \{\mathbf A, \mathbf S, \{\ast \}\}$ .
Since we are interested in finding SI's other than the trivial ones appearing in case 2, we focus on case 1, and will assume from now on that
Here are the operation tables of a few other examples of idempotent groupoids with the properties mentioned (i.e.,
0 | 1 | 2 | 3 | |
---|---|---|---|---|
0 | 0 | 2 | 1 | 3 |
1 | 0 | 1 | 3 | 2 |
2 | 1 | 3 | 2 | 1 |
3 | 1 | 2 | 1 | 3 |
0 | 1 | 2 | 3 | |
---|---|---|---|---|
0 | 0 | 2 | 3 | 1 |
1 | 0 | 1 | 3 | 2 |
2 | 2 | 3 | 2 | 1 |
3 | 2 | 2 | 1 | 3 |
0 | 1 | 2 | 3 | |
---|---|---|---|---|
0 | 0 | 3 | 2 | 1 |
1 | 0 | 1 | 3 | 2 |
2 | 3 | 3 | 2 | 1 |
3 | 3 | 2 | 1 | 3 |
0 | 1 | 2 | 3 | |
---|---|---|---|---|
0 | 0 | 3 | 1 | 1 |
1 | 0 | 1 | 3 | 2 |
2 | 0 | 3 | 2 | 1 |
3 | 1 | 2 | 1 | 3 |
There are also 6-element algebras with these properties. Take, for example, the algebra
* | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
0 | 0 | 2 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 3 | 5 | 2 | 4 |
2 | 0 | 3 | 2 | 4 | 5 | 1 |
3 | 0 | 5 | 4 | 3 | 1 | 2 |
4 | 0 | 2 | 5 | 1 | 4 | 3 |
5 | 1 | 4 | 1 | 2 | 3 | 5 |
More generally, the following table yields a
* | 0 | 1 | 2 | 3 | ... | |
---|---|---|---|---|---|---|
0 | 0 | 2 | 1 | 1 | 1 | |
1 | 0 | |||||
2 | 0 | |||||
0 | ||||||
1 |
Specializing to
is a triple,
Where we take
More generally, for
Valeriote and Willard prove in [V-W] that an idempotent algebra
Question: Can the pair of terms below be used as the (non-projection) terms in a local Hagemann-Mitchke sequence
Answer: No, these don't work. (insert counterexample)
Here are some other tables that also yield algebras generating a CM, non-distributive variety with no cube term:
All of the examples mentioned above, and the three properties claimed (CM, not CD, no edge term), can be checked by pasting the following xml code into a file (say, Groupoids.ua
) and then opening that file in the UACalc. To check the properties, from the "Idempotent Alg" menu, select the following:
- Is V(A) CD (answer "no")
- Is V(A) CM (answer "yes")
- Edge term for some k (answer "no")
<?xml version="1.0"?>
<algebras>
<algebra>
<basicAlgebra>
<algName>FourEltGrpoid_0</algName>
<cardinality>4</cardinality>
<operations>
<op>
<opSymbol>
<opName>*</opName>
<arity>2</arity>
</opSymbol>
<opTable>
<intArray>
<row r="[0]">0,2,1,1</row>
<row r="[1]">0,1,3,2</row>
<row r="[2]">0,3,2,1</row>
<row r="[3]">1,2,1,3</row>
</intArray>
</opTable>
</op>
</operations>
</basicAlgebra>
</algebra>
<algebra>
<basicAlgebra>
<algName>FourEltGrpoid_1</algName>
<cardinality>4</cardinality>
<operations>
<op>
<opSymbol>
<opName>*</opName>
<arity>2</arity>
</opSymbol>
<opTable>
<intArray>
<row r="[1]">0,2,1,3</row>
<row r="[2]">0,1,3,2</row>
<row r="[3]">1,3,2,1</row>
<row r="[4]">1,2,1,3</row>
</intArray>
</opTable>
</op>
</operations>
</basicAlgebra>
</algebra>
<algebra>
<basicAlgebra>
<algName>FourEltGrpoid_2</algName>
<cardinality>4</cardinality>
<operations>
<op>
<opSymbol>
<opName>*</opName>
<arity>2</arity>
</opSymbol>
<opTable>
<intArray>
<row r="[1]">0,2,3,1</row>
<row r="[2]">0,1,3,2</row>
<row r="[3]">2,3,2,1</row>
<row r="[4]">2,2,1,3</row>
</intArray>
</opTable>
</op>
</operations>
</basicAlgebra>
</algebra>
<algebra>
<basicAlgebra>
<algName>FourEltGrpoid_3</algName>
<cardinality>4</cardinality>
<operations>
<op>
<opSymbol>
<opName>*</opName>
<arity>2</arity>
</opSymbol>
<opTable>
<intArray>
<row r="[1]">0,3,2,1</row>
<row r="[2]">0,1,3,2</row>
<row r="[3]">3,3,2,1</row>
<row r="[4]">3,2,1,3</row>
</intArray>
</opTable>
</op>
</operations>
</basicAlgebra>
</algebra>
<algebra>
<basicAlgebra>
<algName>FourEltGrpoid_4</algName>
<cardinality>4</cardinality>
<operations>
<op>
<opSymbol>
<opName>*</opName>
<arity>2</arity>
</opSymbol>
<opTable>
<intArray>
<row r="[1]">0,3,1,1</row>
<row r="[2]">0,1,3,2</row>
<row r="[3]">0,3,2,1</row>
<row r="[4]">1,2,1,3</row>
</intArray>
</opTable>
</op>
</operations>
</basicAlgebra>
</algebra>
<algebra>
<basicAlgebra>
<algName>SixEltGrpoid_1</algName>
<cardinality>6</cardinality>
<operations>
<op>
<opSymbol>
<opName>*</opName>
<arity>2</arity>
</opSymbol>
<opTable>
<intArray>
<row r="[1]">0,2,1,1,1,1</row>
<row r="[2]">0,1,3,5,2,4</row>
<row r="[3]">0,3,2,4,5,1</row>
<row r="[4]">0,5,4,3,1,2</row>
<row r="[5]">0,2,5,1,4,3</row>
<row r="[6]">1,4,1,2,3,5</row>
</intArray>
</opTable>
</op>
</operations>
</basicAlgebra>
</algebra>
</algebras>
- [A-M] Aichinger and Mayr, "Finitely generated equational classes," 2016.
- [F-M] Freese and McKenzie, "Commutator theory for congruence modular varieties," 1987.
- [K] Kearnes, "Idempotent simple algebras," 1994.
- [V-W] Valeriote and Willard, "Idempotent {$n$}-permutable varieties," 2014.
@article {MR3471188,
AUTHOR = {Aichinger, Erhard and Mayr, Peter},
TITLE = {Finitely generated equational classes},
JOURNAL = {J. Pure Appl. Algebra},
FJOURNAL = {Journal of Pure and Applied Algebra},
VOLUME = {220},
YEAR = {2016},
NUMBER = {8},
PAGES = {2816--2827},
ISSN = {0022-4049},
MRCLASS = {08B05 (03C05 08B15)},
MRNUMBER = {3471188},
MRREVIEWER = {Mohammad Shahryari},
DOI = {10.1016/j.jpaa.2016.01.001},
URL = {https://doi-org.colorado.idm.oclc.org/10.1016/j.jpaa.2016.01.001},
}
@book {MR909290,
AUTHOR = {Freese, Ralph and McKenzie, Ralph},
TITLE = {Commutator theory for congruence modular varieties},
SERIES = {London Mathematical Society Lecture Note Series},
VOLUME = {125},
PUBLISHER = {Cambridge University Press, Cambridge},
YEAR = {1987},
PAGES = {iv+227},
ISBN = {0-521-34832-3},
MRCLASS = {08B10},
MRNUMBER = {909290 (89c:08006)},
MRREVIEWER = {Sheila Oates-Williams},
}
@incollection {MR1404955,
AUTHOR = {Kearnes, Keith A.},
TITLE = {Idempotent simple algebras},
BOOKTITLE = {Logic and algebra ({P}ontignano, 1994)},
SERIES = {Lecture Notes in Pure and Appl. Math.},
VOLUME = {180},
PAGES = {529--572},
PUBLISHER = {Dekker, New York},
YEAR = {1996},
MRCLASS = {08B05 (06F25 08A05 08A30)},
MRNUMBER = {1404955},
MRREVIEWER = {E. W. Kiss},
}
@article {MR3239624,
AUTHOR = {Valeriote, M. and Willard, R.},
TITLE = {Idempotent {$n$}-permutable varieties},
JOURNAL = {Bull. Lond. Math. Soc.},
FJOURNAL = {Bulletin of the London Mathematical Society},
VOLUME = {46},
YEAR = {2014},
NUMBER = {4},
PAGES = {870--880},
ISSN = {0024-6093},
MRCLASS = {08A05 (06F99 68Q25)},
MRNUMBER = {3239624},
DOI = {10.1112/blms/bdu044},
URL = {http://dx.doi.org/10.1112/blms/bdu044},
}