-
Notifications
You must be signed in to change notification settings - Fork 3
/
test_produce_maps.py
66 lines (53 loc) · 2.19 KB
/
test_produce_maps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import torch
import torch.nn.functional as F
import sys
import torch.nn as nn
import numpy as np
import os, argparse
import cv2
# from Code.lib.model import SPNet
from Code.models.builder import EncoderDecoder as segmodel
from Code.utils.data import test_dataset
from tqdm import tqdm
parser = argparse.ArgumentParser()
parser.add_argument('--testsize', type=int, default=352, help='testing size')
parser.add_argument('--gpu_id', type=str, default='0', help='select gpu id')
parser.add_argument('--test_path',type=str, default='./Data/TestDataset/',help='test dataset path')
parser.add_argument('--checkpoint',type=str, default='Checkpoint/trained/DFormer_SOD_epoch_best.pth',help='checkpoint path')
opt = parser.parse_args()
dataset_path = opt.test_path
#set device for test
if opt.gpu_id=='0':
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
print('USE GPU 0')
#load the model
model = segmodel(is_test=True)
model.cuda()
model.load_state_dict(torch.load(opt.checkpoint),strict=True)
model.eval()
#test
test_datasets = ['NJU2K','NLPR', 'DES', 'SSD','SIP', 'STERE']
# test_datasets = ['STERE']
for dataset in test_datasets:
save_path = './test_maps/DFormer-SOD/' + dataset + '/'
if not os.path.exists(save_path):
os.makedirs(save_path)
image_root = dataset_path + dataset + '/RGB/'
gt_root = dataset_path + dataset + '/GT/'
depth_root = dataset_path + dataset + '/depth/'
test_loader = test_dataset(image_root, gt_root,depth_root, opt.testsize)
print('test dataset: ',dataset)
for i in tqdm(range(test_loader.size), dynamic_ncols=True):
image, gt,depth, name, image_for_post = test_loader.load_data()
gt = np.asarray(gt, np.float32)
gt /= (gt.max() + 1e-8)
image = image.cuda()
depth = depth.cuda()
pre_res = model(image,depth)
res = pre_res
res = F.upsample(res, size=gt.shape, mode='bilinear', align_corners=False)
res = res.sigmoid().data.cpu().numpy().squeeze()
res = (res - res.min()) / (res.max() - res.min() + 1e-8)
# print('save img to: ',save_path+name)
cv2.imwrite(save_path+name,res*255)
print('Test Done!')