-
Notifications
You must be signed in to change notification settings - Fork 54
/
distill_train.py
executable file
·222 lines (193 loc) · 9.67 KB
/
distill_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import os
import torch
from random import randint
from utils.loss_utils import l1_loss, ssim
from gaussian_renderer import render, network_gui
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
from os import makedirs
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
from utils.graphics_utils import getWorld2View2
from utils.pose_utils import gaussian_poses
from icecream import ic
import random
import copy
import json
import numpy as np
from utils.logger_utils import prepare_output_and_logger, training_report
from torch.optim.lr_scheduler import ExponentialLR
from prune import prune_list, calculate_v_imp_score
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
class NumpyArrayEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return super(NumpyArrayEncoder, self).default(obj)
to_tensor = lambda x: x.to("cuda") if isinstance(
x, torch.Tensor) else torch.Tensor(x).to("cuda")
img2mse = lambda x, y: torch.mean((x - y)**2)
mse2psnr = lambda x: -10. * torch.log(x) / torch.log(to_tensor([10.]))
def training(args, dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from, new_max_sh):
first_iter = 0
old_sh_degree = dataset.sh_degree
dataset.sh_degree = new_max_sh
tb_writer = prepare_output_and_logger(dataset)
with torch.no_grad():
teacher_gaussians = GaussianModel(old_sh_degree)
# teacher_gaussians.training_setup(opt)
student_gaussians = GaussianModel(old_sh_degree)
student_scene = Scene(dataset, student_gaussians)
if checkpoint:
(teacher_model_params, _) = torch.load(args.teacher_model)
(model_params, first_iter) = torch.load(checkpoint)
teacher_gaussians.restore(teacher_model_params, copy.deepcopy(opt))
student_gaussians.restore(model_params, opt)
student_gaussians.max_sh_degree = new_max_sh
student_gaussians.onedownSHdegree()
student_gaussians.training_setup(opt)
student_gaussians.scheduler = ExponentialLR(student_gaussians.optimizer, gamma=0.90)
# if !args.enable
if (not args.enable_covariance):
student_gaussians._scaling.requires_grad = False
student_gaussians._rotation.requires_grad = False
if (not args.enable_opacity):
student_gaussians._opacity.requires_grad = False
teacher_gaussians.optimizer = None
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
# os.makedirs(student_scene.model_path + "/vis_data", exist_ok=True)
for iteration in range(first_iter, opt.iterations + 1):
if network_gui.conn == None:
network_gui.try_connect()
while network_gui.conn != None:
try:
net_image_bytes = None
custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
if custom_cam != None:
net_image = render(custom_cam, student_gaussians, pipe, background, scaling_modifer)["render"]
net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
network_gui.send(net_image_bytes, dataset.source_path)
if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
break
except Exception as e:
network_gui.conn = None
iter_start.record()
student_gaussians.update_learning_rate(iteration)
# Every 500 iterations step in scheduler
if iteration % 500 == 0:
# student_gaussians.oneupSHdegree()
student_gaussians.scheduler.step()
if not viewpoint_stack:
viewpoint_stack = student_scene.getTrainCameras().copy()
viewpoint_cam_org = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
viewpoint_cam = copy.deepcopy(viewpoint_cam_org)
if (iteration - 1) == debug_from:
pipe.debug = True
if args.augmented_view and iteration%3:
viewpoint_cam = gaussian_poses(viewpoint_cam, mean= 0, std_dev_translation=0.05, std_dev_rotation=0)
student_render_pkg = render(viewpoint_cam, student_gaussians, pipe, background)
student_image = student_render_pkg["render"]
teacher_render_pkg = render(viewpoint_cam, teacher_gaussians, pipe, background)
teacher_image = teacher_render_pkg["render"].detach()
else:
render_pkg = render(viewpoint_cam, student_gaussians, pipe, background)
student_image = render_pkg["render"]
teacher_image = render(viewpoint_cam, teacher_gaussians, pipe, background)["render"].detach()
Ll1 = l1_loss(student_image, teacher_image)
# Ll1 = img2mse(student_image, teacher_image)
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(student_image, teacher_image))
loss.backward()
iter_end.record()
with torch.no_grad():
ema_loss_for_log = 0.4 * loss.item() + 0.6 * ema_loss_for_log
if iteration % 10 == 0:
progress_bar.set_postfix({"Loss": f"{ema_loss_for_log:.{7}f}"})
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
ic(student_gaussians._features_rest.detach().shape)
student_scene.save(iteration)
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, student_scene, render, (pipe, background))
# Optimizer step
if iteration < opt.iterations:
student_gaussians.optimizer.step()
student_gaussians.optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
if not os.path.exists(student_scene.model_path):
os.makedirs(student_scene.model_path)
torch.save((student_gaussians.capture(), iteration), student_scene.model_path + "/chkpnt" + str(iteration) + ".pth")
if iteration == checkpoint_iterations[-1]:
print("Saving Imp_score")
gaussian_list, imp_list = prune_list(
student_gaussians, student_scene, pipe, background
)
v_list = calculate_v_imp_score(student_gaussians, imp_list, 0.1)
np.savez(
os.path.join(student_scene.model_path, "imp_score"),
v_list.cpu().detach().numpy(),
)
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6009)
parser.add_argument('--debug_from', type=int, default=-1)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[35_001, 40_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[40_000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[40_000])
parser.add_argument("--start_checkpoint", type=str, default = None)
parser.add_argument("--new_max_sh", type=int, default = 2)
parser.add_argument("--augmented_view", action="store_true")
parser.add_argument("--enable_covariance", action="store_true")
parser.add_argument("--enable_opacity", action="store_true")
parser.add_argument("--opacity_prune", type=float, default = 0)
parser.add_argument("--teacher_model", type=str)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(args, lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from, args.new_max_sh)
# All done
print("\nTraining complete.")