-
Notifications
You must be signed in to change notification settings - Fork 3
/
genre_relationships.py
executable file
·224 lines (181 loc) · 7.74 KB
/
genre_relationships.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
'''
Created on Apr 9, 2014
@author: daniel-allington
'''
# Creates a new database containing: (a) table of genre strings, with
# absolute frequencies, in order of frequency, leaving out any below a
# given threshold of frequency; (b) as a but for tags; (c) table of
# users with tracks, giving (i) all genre strings associated with each
# user's tracks, with frequency, in order of frequency, (ii) the
# user's most common genre string, (iii) the user's most common three
# genre strings (in alphabetical ordre; (d) as c but for tags. This
# database is stored in an sqlite file with '_deriv' appended to the
# name of the database it's derived from.
# Where the program has to choose between genres/tags that a user has
# used with equal frequency, it chooses the one that is more frequent
# in the dataset as a whole (where this is tied, it chooses the
# shorter string; where that is tied, the alphabetically prior
# string).
# Purpose: it will then be possible to create an undirected network of
# users with edges based not on followings etc but on use of similar
# genres/tags - and a network of genres/tags based on which ones are
# associated with tracks uploaded by the same individuals. Hopefully
# clusters in the two networks will give us a sense of the broad
# stylistic groupings behind the huge range of genre terms used on
# SoundCloud. Calculating betweenness centrality for these clusters
# will help to identify key terms and individuals.
# Edit: this now removes all spaces and hyphens from within strings.
# Reason is to stop 'hip hop', 'hip-hop', and 'hiphop' appearing as
# three different things.
import sqlite3
import re
import collections
import add_data
import cPickle
import deriv_db
genre_sep = re.compile(r'"|,|/|\\')
tag_captu = re.compile(r'"(.+?)"|\b(\S+?)\b')
to_remove = re.compile(r'[ -]')
genre_threshold = 2
tag_threshold = 2
f = open('stopwords') # extracted from NLTK
stop = cPickle.load(f)
f.close()
def flatten(l):
return [i for subl in l for i in subl]
def user_data(curs,user,col):
# Apologies for combining a string operation with the proper
# SQLite insertion method (with ?) - for some reason, when I try
# to insert a table name with ?, it thinks this is a value that I
# want it to return. The database is safe so this isn't the
# security issue that it might have been - but I'll change it once
# I figure out how.
return curs.execute('SELECT {} FROM tracks WHERE user_id=?'.format(col),(user,))
def all_genres(curs):
curs.execute('SELECT * FROM sqlite_master')
return curs.execute('SELECT genre FROM tracks')
def all_tags(curs):
return curs.execute('SELECT tag_list FROM tracks')
def clean(l):
l2=[to_remove.sub('',i) for i in l]
return [i for i in l2 if len(i)>1 and i not in stop]
def strings_from_string(s,col):
if col=='genre':
return clean([g.strip()
for g in genre_sep.split(s.lower().strip('"\' '))])
elif col=='tag_list':
return clean([group[0] if group[0] else group[1]
for group in tag_captu.findall(s.lower())])
else: print 'Unrecognised source column name: {}'.format(col)
def strings_from_iterator(ite,col):
strings=[]
for i in ite:
if i[0]: strings.extend(strings_from_string(i[0],col))
return strings
def n_from_list(l,n,cursderiv,ranktable):
sorting_list=[]
for item in l:
cursderiv.execute('SELECT rank FROM {} WHERE string=?'.format(ranktable),
(item[0],))
c = cursderiv.fetchone()
if c: rank=c[0]
else: rank=10000000
sorting_list.append((rank,len(item[0]),item[0]))
return [(i[2],) for i in sorted(sorting_list)[:n]]
def n_most_common(counted,n,cursderiv,ranktable):
c = (x for x in counted)
l = []
unused = None
current= []
while c:
while True:
try:
item = c.next()
if not current:
current.append(item)
elif item[1] == current[0][1]:
current.append(item)
else:
unused = [item]
break
except StopIteration:
c=False
break
if len(l)+len(current) <= n:
l.extend(current)
current = unused
unused = None
else:
break
if current:
l.extend(n_from_list(current,n-len(l),cursderiv,ranktable))
string_list=[i[0] for i in l]
return sorted(string_list+(['']*(n-len(string_list))))
def add_ranks(l,threshold):
if not l: return [('','',0)]
counted = collections.Counter(l).most_common()
nums=list(reversed(sorted(set(zip(*counted)[1]))))
return [(c[0],c[1],nums.index(c[1])+1) for c in counted if c[1]>=threshold]
def create_gt_table(curssourc,cursderiv,colsourc,tabderiv):
add_data.create_table(cursderiv,tabderiv)
entries = (all_genres(curssourc) if tabderiv=='genres'
else all_tags(curssourc))
l = []
for e in entries:
if e[0]:
l.extend(strings_from_string(e[0],colsourc))
sql=('INSERT INTO {} (string,frequency,rank) '
'VALUES(?,?,?)'.format(tabderiv))
thresh = (genre_threshold if tabderiv == 'genres' else tag_threshold)
cursderiv.executemany(sql,add_ranks(l,thresh))
def check_tables(cursderiv,required_tables):
tables_present=[]
for t in required_tables:
cursderiv.execute("SELECT name FROM sqlite_master WHERE type='table' "
"AND name=?",(t,))
tables_present.append(True if len (cursderiv.fetchall()) > 0
else False)
return tables_present
def gt_tables(db_source):
connsourc,connderiv = deriv_db.connect_databases(db_source)
curssourc = connsourc.cursor()
cursderiv = connderiv.cursor()
for colsourc,table in [('genre','genres'),('tag_list','tags')]:
create_gt_table(curssourc,cursderiv,colsourc,table)
connderiv.commit()
def deriv_user_data(curssourc,cursderiv,users,colsourc,ranktable):
for user in users:
print 'Working with user: '+str(user)
to_count=strings_from_iterator(user_data(curssourc,user[0],colsourc),
colsourc)
counted=collections.Counter(to_count).most_common()
mcstring = unicode(n_most_common(counted,
1,cursderiv,ranktable)[0])
cstrings = ' | '.join(n_most_common(counted,
3,cursderiv,ranktable))
str_counted= ' | '.join([u'{}, {}'.format(c[0],c[1])
for c in counted])
yield user[0],str_counted,mcstring,cstrings
def user_gt_tables(db_source):
connsourc,connderiv = deriv_db.connect_databases(db_source)
curssourc = connsourc.cursor()
cursderiv = connderiv.cursor()
required=['genres','tags']
ct = check_tables(cursderiv,required)
if not ct[0] or not ct[1]:
for n,r in enumerate(ct):
if not r: print 'Could not find {} table.'.format(required[n])
print ('Before calling this function, call gt_tables with '
'path of source database to create necessary tables.')
return False
curssourc.execute('SELECT user_id FROM tracks')
users=set(curssourc.fetchall())
for colsourc,tabderiv,ranktable in [('genre','user_genres','genres'),
('tag_list','user_tags','tags')]:
print 'Now working with: '+ranktable
add_data.create_table(cursderiv,tabderiv)
add_data.insert_deriv_data(cursderiv,tabderiv,
deriv_user_data(curssourc,cursderiv,
users,colsourc,ranktable))
connderiv.commit()
return True