-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkm_vector.py
105 lines (88 loc) · 2.36 KB
/
km_vector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import os
import math
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from sklearn.cluster import KMeans
# from mpl_toolkits import mplot3d
def find_vector(subdirect, filename):
vec = list()
data = pd.read_csv(os.path.join(subdirect, filename))
# print(subdirect)
X = data['posX'].values[0:30000:1000]
Y = data['posZ'].values[0:30000:1000]
if len(X) != 30 or len(Y) != 30:
# false/terminate
return vec
# plt.scatter(X, Y)
# plt.show()
for x in X:
vec.append(x)
for y in Y:
# print(y)
vec.append(y)
# print(vec)
# quit()
return vec
rootdir = os.getcwd()
arr = list()
# dictionary
row_dict = list()
# hardcord
SUBDIRECT = None
count = 0
# actual processing files
for subdir, dirs, files in os.walk(rootdir):
for file in files:
if '.csv' in file:
#quit()
# ONE TIME THING
if not SUBDIRECT:
SUBDIRECT = subdir
tmp = find_vector(subdir, file)
if not tmp:
print('Invalid file (for this decimation strategy): ', file)
continue
arr.append(tmp)
row_dict.append(file)
# print('arr:', arr)
# print('=======================')
X = np.array(arr)
# print('X:', X)
# print(np.unique(list(map(len, X))))
# number of clusters*****************
k = 8
# Machine Learning
kmeans = KMeans(n_clusters = k)
# important code:
kmeans.fit(X)
y_kmeans = kmeans.predict(X)
print(y_kmeans)
# centers = kmeans.cluster_centers_
# plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5);
# in row_dict we store actual meanings of rows, in my case it's russian words
clusters = {}
n = 0
for item in y_kmeans:
if item in clusters:
clusters[item].append(row_dict[n])
else:
clusters[item] = [row_dict[n]]
n +=1
# for item in clusters:
# print("Cluster ", item)
# for i in clusters[item]:
# print(i)
for item in sorted(clusters):
print("Cluster ", item)
print(clusters[item])
# Plot points by clusters
# Reorganize the printings
for item in sorted(clusters):
print("Cluster ", item)
for i in clusters[item]:
data = pd.read_csv(os.path.join(SUBDIRECT, i))
X = data['posX'].values[0:30000:1000]
Y = data['posZ'].values[0:30000:1000]
plt.scatter(X, Y)
plt.show()