Skip to content

Commit

Permalink
Add function to save to csv
Browse files Browse the repository at this point in the history
  • Loading branch information
amrit110 committed Mar 11, 2024
1 parent 54d829e commit fff6439
Showing 1 changed file with 37 additions and 74 deletions.
111 changes: 37 additions & 74 deletions data/collect.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@

import json
import os
from typing import List
from typing import Any, Dict, List

import numpy as np
import pandas as pd
Expand All @@ -16,6 +16,30 @@
from tqdm import tqdm


def _save_to_csv(
data: List[Dict[str, Any]], columns: List[str], save_path: str
) -> None:
"""Save the DataFrame to a csv file.
Parameters
----------
data : List[Dict[str, Any]]
The data to save.
columns : List[str]
The column names of the data.
save_path : str
The path to save the data.
"""
dataframe = pd.DataFrame(data, columns=columns)
dataframe.to_csv(
save_path,
mode="a",
header=(not os.path.exists(save_path)),
index=False,
)


class FHIRDataCollector:
"""Collect data from the FHIR database and save to csv files."""

Expand Down Expand Up @@ -76,22 +100,10 @@ def get_patient_data(self) -> None:
}
buffer.append(patient_data)
if len(buffer) >= self.buffer_size:
df_buffer = pd.DataFrame(buffer, columns=patient_cols)
buffer = []
df_buffer.to_csv(
save_path,
mode="a",
header=(not os.path.exists(save_path)),
index=False,
)
_save_to_csv(buffer, patient_cols, save_path)
if buffer:
df_buffer = pd.DataFrame(buffer, columns=patient_cols)
df_buffer.to_csv(
save_path,
mode="a",
header=(not os.path.exists(save_path)),
index=False,
)
_save_to_csv(buffer, patient_cols, save_path)

def get_encounter_data(self) -> None:
"""Get encounter data from the database and save to a csv file."""
Expand Down Expand Up @@ -152,23 +164,11 @@ def get_encounter_data(self) -> None:
}
buffer.append(e_data)
if len(buffer) >= self.buffer_size:
df_buffer = pd.DataFrame(buffer, columns=encounter_cols)
buffer = []
df_buffer.to_csv(
save_path,
mode="a",
header=(not os.path.exists(save_path)),
index=False,
)
_save_to_csv(buffer, encounter_cols, save_path)

if buffer:
df_buffer = pd.DataFrame(buffer, columns=encounter_cols)
df_buffer.to_csv(
save_path,
mode="a",
header=(not os.path.exists(save_path)),
index=False,
)
_save_to_csv(buffer, encounter_cols, save_path)

patients = patients[~patients["patient_id"].isin(outpatient_ids)]
patients.to_csv(self.csv_dir + "/inpatient.csv", index=False)
Expand All @@ -187,7 +187,6 @@ def get_procedure_data(self) -> None:
autoload_with=self.engine,
schema=self.schema,
)

procedure_cols = [
"patient_id",
"length",
Expand All @@ -208,7 +207,6 @@ def get_procedure_data(self) -> None:
query = select(procedure_table.c.fhir).where(
procedure_table.c.patient_id == patient_id,
)

results = connection.execute(query).fetchall()
proc_codes = []
proc_dates = []
Expand Down Expand Up @@ -241,23 +239,11 @@ def get_procedure_data(self) -> None:
}
buffer.append(m_data)
if len(buffer) >= self.buffer_size:
df_buffer = pd.DataFrame(buffer, columns=procedure_cols)
buffer = []
df_buffer.to_csv(
save_path,
mode="a",
header=(not os.path.exists(save_path)),
index=False,
)
_save_to_csv(buffer, procedure_cols, save_path)

if buffer:
df_buffer = pd.DataFrame(buffer, columns=procedure_cols)
df_buffer.to_csv(
save_path,
mode="a",
header=(not os.path.exists(save_path)),
index=False,
)
_save_to_csv(buffer, procedure_cols, save_path)

with open(self.vocab_dir + "/procedure_vocab.json", "w") as f:
json.dump(list(procedure_vocab), f)
Expand Down Expand Up @@ -346,23 +332,12 @@ def get_medication_data(self) -> None:
}
buffer.append(m_data)
if len(buffer) >= self.buffer_size:
df_buffer = pd.DataFrame(buffer, columns=medication_cols)
buffer = []
df_buffer.to_csv(
save_path,
mode="a",
header=(not os.path.exists(save_path)),
index=False,
)
_save_to_csv(buffer, medication_cols, save_path)

if buffer:
df_buffer = pd.DataFrame(buffer, columns=medication_cols)
df_buffer.to_csv(
save_path,
mode="a",
header=(not os.path.exists(save_path)),
index=False,
)
_save_to_csv(buffer, medication_cols, save_path)

with open(self.vocab_dir + "/med_vocab.json", "w") as f:
json.dump(list(med_vocab), f)

Expand Down Expand Up @@ -432,7 +407,7 @@ def get_lab_data(self) -> None:
encounters.append(event.encounter.reference.split("/")[-1])

if code not in all_units:
all_units[code] = set(event.valueQuantity.unit)
all_units[code] = set([event.valueQuantity.unit])
else:
all_units[code].add(event.valueQuantity.unit)

Expand All @@ -452,23 +427,11 @@ def get_lab_data(self) -> None:
}
buffer.append(m_data)
if len(buffer) >= self.buffer_size:
df_buffer = pd.DataFrame(buffer, columns=lab_cols)
buffer = []
df_buffer.to_csv(
save_path,
mode="a",
header=(not os.path.exists(save_path)),
index=False,
)
_save_to_csv(buffer, lab_cols, save_path)

if buffer:
df_buffer = pd.DataFrame(buffer, columns=lab_cols)
df_buffer.to_csv(
save_path,
mode="a",
header=(not os.path.exists(save_path)),
index=False,
)
_save_to_csv(buffer, lab_cols, save_path)

with open(self.vocab_dir + "/lab_vocab.json", "w") as f:
json.dump(list(lab_vocab), f)
Expand Down

0 comments on commit fff6439

Please sign in to comment.