Skip to content

Our project employs machine learning to pinpoint phishing URLs with 97.4% accuracy, leveraging HTTPS and website traffic as critical indicators. Insights into features like AnchorURL enhance cybersecurity strategies, showcasing the power of AI in combating online threats.

Notifications You must be signed in to change notification settings

Vimal007Vimal/Malicious-URL-Detection

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

18 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Malicious URL Detection

image image

Installation

The Code is written in Python 3.9 If you don't have Python installed you can find it here. If you are using a lower version of Python you can upgrade using the pip package, ensuring you have the latest version of pip. To install the required packages and libraries, run this command in the project directory after cloning the repository:

pip install -r requirements.txt

Directory Tree

├── static
│   ├── styles.css
├── templates
│   ├── index.html
├── README.md
├── app.py
├── feature.py
├── phishing.csv
├── requirements.txt


Technologies Used

Result

Accuracy of various model used for URL detection


ML Model Accuracy f1_score Recall Precision
0 Gradient Boosting Classifier 0.974 0.977 0.994 0.986
1 CatBoost Classifier 0.972 0.975 0.994 0.989
2 XGBoost Classifier 0.969 0.973 0.993 0.984
3 Multi-layer Perceptron 0.969 0.973 0.995 0.981
4 Random Forest 0.967 0.971 0.993 0.990
5 Support Vector Machine 0.964 0.968 0.980 0.965
6 Decision Tree 0.960 0.964 0.991 0.993
7 K-Nearest Neighbors 0.956 0.961 0.991 0.989
8 Logistic Regression 0.934 0.941 0.943 0.927
9 Naive Bayes Classifier 0.605 0.454 0.292 0.997

Feature importance for Malicious URL Detection

image

Gradient Boosting Classifier currectly classify URL upto 97.4% respective classes and hence reduces the chance of malicious attachments. \The final conclusion on the Malicious dataset is that the some feature like "HTTTPS", "AnchorURL", "WebsiteTraffic" have more importance to classify URL is Malicious URL or not. The final take away form this project is to explore various machine learning models, perform Exploratory Data Analysis on Malicious dataset and understanding their features.

About

Our project employs machine learning to pinpoint phishing URLs with 97.4% accuracy, leveraging HTTPS and website traffic as critical indicators. Insights into features like AnchorURL enhance cybersecurity strategies, showcasing the power of AI in combating online threats.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published