-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathisbnet_scannet200.yaml
87 lines (79 loc) · 1.67 KB
/
isbnet_scannet200.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
model:
channels: 32
num_blocks: 7
semantic_classes: 200
instance_classes: 198
sem2ins_classes: []
semantic_only: False
semantic_weight: False
with_coords: True
ignore_label: -100
voxel_scale: 50
use_spp_pool: True
filter_bg_thresh: 0.1
iterative_sampling: True
instance_head_cfg:
num_dyco_layer: 3
dec_dim: 128
n_sample_pa1: 2048
n_queries: 256
radius_scale: 1
radius: 0.4
neighbor: 32
test_cfg:
x4_split: False
logit_thresh: 0.0
score_thresh: 0.2
npoint_thresh: 100
type_nms: 'matrix'
topk: 100
fixed_modules: ['input_conv', 'unet', 'output_layer', 'semantic_linear', 'offset_linear', 'offset_vertices_linear', 'box_conf_linear']
data:
train:
type: 'scannet200'
data_root: 'dataset/scannet200'
prefix: 'train'
suffix: '_inst_nostuff.pth'
training: True
repeat: 4
voxel_cfg:
scale: 50
spatial_shape: [128, 512]
max_npoint: 250000
min_npoint: 5000
test:
type: 'scannet200'
data_root: 'dataset/scannet200'
prefix: 'val'
suffix: '_inst_nostuff.pth'
training: False
voxel_cfg:
scale: 50
spatial_shape: [128, 512]
max_npoint: 250000
min_npoint: 5000
dataloader:
train:
batch_size: 12
num_workers: 12
test:
batch_size: 1
num_workers: 1
optimizer:
type: 'AdamW'
lr: 0.001
weight_decay: 0.0001
save_cfg:
semantic: False
offset: False
instance: True
offset_vertices: False
nmc_clusters: False
object_conditions: False
fp16: False
epochs: 120
step_epoch: 50
save_freq: 4
pretrain: 'pretrains/scannet200/pretrain_scannetv2_200_val.pth'
work_dir: ''
# best weight: pretrains/best_baseline.pth