-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
468 lines (389 loc) · 16.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
import argparse
import json
import os
import os.path as osp
import random
import shutil
import time
import numpy as np
import torch
from add_noise_to_data.random_noise import RandomNoiseAdder
from dataset import ShapeNetCore55XyzOnlyDataset
from evaluator import Evaluator
from logger import Logger
from loss import ASW, EMD, SWD, Chamfer, GenSW, MaxSW
from models import PointCapsNet, PointNetAE
from models.utils import init_weights
from saver import Saver
from torch.optim import SGD, Adam
from torch.optim.lr_scheduler import CyclicLR
from torch.utils.data import DataLoader
from tqdm import tqdm
from trainer import AETrainer as Trainer
from utils import get_lr
torch.backends.cudnn.enabled = False
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2 ** 32
np.random.seed(worker_seed)
random.seed(worker_seed)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--config", help="path to json config file")
parser.add_argument("--logdir", help="path to the log directory")
parser.add_argument("--data_path", help="path to data")
parser.add_argument("--loss", default="swd", help="[swd, emd, chamfer, asw, msw, gsw]")
parser.add_argument("--autoencoder", default="pointnet", help="[pointnet, pcn]")
args = parser.parse_args()
config = args.config
logdir = args.logdir
data_path = args.data_path
loss_type = args.loss
ae_type = args.autoencoder
print("Save checkpoints and logs in: ", logdir)
args = json.load(open(config))
args["autoencoder"] = ae_type
args["loss"] = loss_type
# set seed
torch.manual_seed(args["seed"])
random.seed(args["seed"])
np.random.seed(args["seed"])
if not os.path.exists(logdir):
os.makedirs(logdir)
print(">Logdir was created successfully at: ", logdir)
else:
print(">Folder {} is existing.".format(logdir))
print(">Do you want to remove it?")
answer = None
while answer not in ("yes", "no"):
answer = input("Enter 'yes' or 'no': ")
if answer == "yes":
shutil.rmtree(logdir)
os.makedirs(logdir)
elif answer == "no":
print("SOME FILES WILL BE OVERWRITTEN OR APPENDED.")
print("If you do not want this, please stop during next 30s.")
time.sleep(30)
else:
print("Please enter 'yes' or 'no'.")
fname = os.path.join(logdir, "train_ae_config.json")
with open(fname, "w") as fp:
json.dump(args, fp, indent=4)
# print hyperparameters
print(">You have 5s to check the hyperparameters below.")
print(args)
time.sleep(5)
# init dic of extra parameters for trainer.train
dic = {}
# init dic of extra parameters for evaluator.evaluate
eval_dic = {}
# device
device = torch.device(args["device"])
# NoiseAdder
if args["add_noise"]:
if args["noise_adder"] == "random":
noise_adder = RandomNoiseAdder(mean=args["mean_noiseadder"], std=args["std_noiseadder"])
else:
raise ValueError("Unknown noise_adder type.")
# autoencoder architecture
if args["autoencoder"] == "pointnet":
autoencoder = PointNetAE(
args["embedding_size"],
args["input_channels"],
args["input_channels"],
args["num_points"],
args["normalize"],
).to(device)
elif args["autoencoder"] == "pcn":
autoencoder = PointCapsNet(
args["prim_caps_size"],
args["prim_vec_size"],
args["latent_caps_size"],
args["latent_vec_size"],
args["num_points"],
).to(device)
else:
raise Exception("Unknown autoencoder.")
# loss function
if args["loss"] == "chamfer":
loss_func = Chamfer(args["version"])
elif args["loss"] == "emd":
loss_func = EMD()
elif args["loss"] == "swd":
loss_func = SWD(args["num_projs"], device)
elif args["loss"] == "asw":
sample_projs_history = os.path.join(logdir, "sample_projs_history.txt")
loss_func = ASW(
args["init_projs"],
args["step_projs"],
loop_rate_thresh=args["loop_rate_thresh"],
projs_history=sample_projs_history,
max_slices=args["max_slices"],
)
dic = {"epsilon": args["init_epsilon"]}
dic["degree"] = args["degree"]
elif args["loss"] == "msw":
loss_func = MaxSW(device, max_sw_num_iters=args["max_sw_num_iters"], max_sw_lr=args["max_sw_lr"])
elif args["loss"] == "gsw":
loss_func = GenSW(num_projs=args["num_projs"], g_type=args["g_type"], device=device, degree=args["degree"])
else:
raise Exception("Unknown loss function.")
# dataset
if args["train_set"] == "shapenetcore55":
dataset = ShapeNetCore55XyzOnlyDataset(data_path, num_points=args["num_points"], phase="train")
else:
raise Exception("Unknown dataset")
# optimizer
if args["optimizer"] == "sgd":
optimizer = SGD(
autoencoder.parameters(),
lr=args["learning_rate"],
momentum=args["momentum"],
weight_decay=args["weight_decay"],
)
elif args["optimizer"] == "adam":
optimizer = Adam(
autoencoder.parameters(),
lr=args["learning_rate"],
betas=(0.5, 0.999),
weight_decay=args["weight_decay"],
)
else:
raise Exception("Optimizer has had implementation yet.")
# init weights
if osp.isfile(osp.join(logdir, args["checkpoint"])):
print(">Init weights with {}".format(args["checkpoint"]))
checkpoint = torch.load(osp.join(logdir, args["checkpoint"]))
if "autoencoder" in checkpoint.keys():
autoencoder.load_state_dict(checkpoint["autoencoder"])
else:
autoencoder.load_state_dict(checkpoint)
if "optimizer" in checkpoint.keys():
try:
optimizer.load_state_dict(checkpoint["optimizer"])
except:
print(">Found no state dict for optimizer.")
elif osp.isfile(args["checkpoint"]):
print(">Init weights with {}".format(args["checkpoint"]))
checkpoint = torch.load(osp.join(args["checkpoint"]))
if "autoencoder" in checkpoint.keys():
autoencoder.load_state_dict(checkpoint["autoencoder"])
else:
autoencoder.load_state_dict(checkpoint)
else:
print(">Init weights with Xavier")
autoencoder.apply(init_weights)
# dataloader
train_loader = DataLoader(
dataset,
batch_size=args["batch_size"],
num_workers=args["num_workers"],
pin_memory=True,
shuffle=True,
worker_init_fn=seed_worker,
)
# logger
tensorboard_dir = osp.join(logdir, "tensorboard")
if not osp.exists(tensorboard_dir):
os.makedirs(tensorboard_dir)
tensorboard_logger = Logger(tensorboard_dir)
# scheduler
if args["use_scheduler"]:
if args["scheduler"] == "cyclic_lr":
scheduler = CyclicLR(optimizer, base_lr=args["base_lr"], max_lr=args["max_lr"])
else:
raise Exception("Unknown learning rate scheduler.")
# evaluator
if args["evaluator"] == "based_on_train_loss":
args["eval_criteria"] = "loss_func"
args["have_val_set"] = False
elif args["evaluator"] == "based_on_val_loss":
args["eval_criteria"] = "loss_func"
args["have_val_set"] = True
else:
raise ValueError("Unknown evaluator.")
# val_set and val_loader
if args["have_val_set"]:
if args["val_set"] == "shapenetcore55":
val_set = ShapeNetCore55XyzOnlyDataset(args["val_root"], num_points=args["num_points"], phase="test")
else:
raise Exception("Unknown dataset")
val_loader = DataLoader(
val_set,
batch_size=args["val_batch_size"],
num_workers=args["num_workers"],
pin_memory=True,
shuffle=False,
worker_init_fn=seed_worker,
)
# avg_eval_value for model selection
# init avg_eval_value
avg_eval_value = args["best_eval_value"]
best_eval_value = float(args["best_eval_value"])
best_epoch = int(args["best_epoch"])
avg_train_loss = args["best_train_loss"]
best_train_loss = float(args["best_train_loss"])
best_epoch_based_on_train_loss = int(args["best_epoch_based_on_train_loss"])
print("best eval value: ", best_eval_value)
print("best epoch: ", best_epoch)
# train
start_epoch = args["start_epoch"]
num_epochs = args["num_epochs"]
model_path = os.path.join(logdir, "model.pth")
best_train_loss_model_path = os.path.join(logdir, "best_train_loss_model.pth")
rec_train_log_path = os.path.join(logdir, "rec_train.log")
reg_train_log_path = os.path.join(logdir, "reg_train.log")
train_log_path = os.path.join(logdir, "train.log")
eval_log_path = os.path.join(logdir, "eval_when_train.log")
best_eval_log_path = os.path.join(logdir, "best_eval_when_train.log")
best_train_log_path = os.path.join(logdir, "best_train.log")
start_time = time.time()
dic["iter_id"] = 0
prev_losses_list = []
for epoch in tqdm(range(start_epoch, num_epochs)):
# Below optimizer setup as original code of 3D Point Capsule Net https://github.com/yongheng1991/3D-point-capsule-networks/blob/master/apps/AE/train_ae.py
if args["autoencoder"] == "pcn":
if epoch < 20:
optimizer = Adam(autoencoder.parameters(), lr=0.001)
elif epoch < 50:
optimizer = Adam(autoencoder.parameters(), lr=0.0001)
else:
optimizer = Adam(autoencoder.parameters(), lr=0.00001)
train_loss_list = []
rec_train_loss_list = []
reg_train_loss_list = []
for batch_id, batch in tqdm(enumerate(train_loader)):
dic["iter_id"] += 1
data = batch.to(device)
if args["add_noise"]:
if args["train_denoise"]:
dic["input"] = data.detach().clone()
data = noise_adder.add_noise(data)
# train_on_batch
result_dic = Trainer.train(autoencoder, loss_func, optimizer, data, **dic)
autoencoder = result_dic["ae"]
optimizer = result_dic["optimizer"]
train_loss = result_dic["loss"]
# 2 types of losses
if "rec_loss" in result_dic.keys():
rec_train_loss_list.append(result_dic["rec_loss"].item())
if "reg_loss" in result_dic.keys():
reg_train_loss_list.append(result_dic["reg_loss"].item())
# append to loss lists
train_loss_list.append(train_loss.item())
# update epsilon for adaptive sw
if "epsilon" in dic.keys():
if not args["fix_epsilon"]:
# updata prev_losses_list
assert ("num_prev_losses" in args.keys()) and (args["num_prev_losses"] > 0)
if len(prev_losses_list) == args["num_prev_losses"]:
prev_losses_list.pop(0) # pop the first item
prev_losses_list.append(train_loss.item()) # add item to the last
dic["epsilon"] = min(prev_losses_list) * args["next_epsilon_ratio_rec"]
if "rec" in dic.keys() and "epsilon" in dic["rec"].keys():
dic["rec"]["epsilon"] = result_dic["rec_loss"].item() * args["next_epsilon_ratio_rec"]
if "reg" in dic.keys() and "epsilon" in dic["reg"].keys():
dic["reg"]["epsilon"] = result_dic["reg_loss"].item() * args["next_epsilon_ratio_reg"]
# adjust scheduler
if args["use_scheduler"]:
scheduler.step()
# write tensorboard log
info = {"train_loss": train_loss.item(), "learning rate": get_lr(optimizer)}
if "rec_loss" in result_dic.keys():
info["rec_train_loss"] = rec_train_loss_list[-1]
if "reg_loss" in result_dic.keys():
info["reg_train_loss"] = reg_train_loss_list[-1]
if "num_slices" in result_dic.keys():
info["num_slices"] = result_dic["num_slices"]
for tag, value in info.items():
tensorboard_logger.scalar_summary(tag, value, len(train_loader) * epoch + batch_id + 1)
# empty cache
if ("empty_cache_batch" in args.keys()) and args["empty_cache_batch"]:
torch.cuda.empty_cache()
# end for 1 epoch
# calculate avg_train_loss of the epoch
if len(rec_train_loss_list) > 0:
avg_rec_train_loss = sum(rec_train_loss_list) / len(rec_train_loss_list)
if len(reg_train_loss_list) > 0:
avg_reg_train_loss = sum(reg_train_loss_list) / len(reg_train_loss_list)
avg_train_loss = sum(train_loss_list) / len(train_loss_list)
# evaluate on validation set
if args["have_val_set"] and (epoch % args["epoch_gap_for_evaluation"] == 0):
eval_value_list = []
with torch.no_grad():
for batch_id, batch in tqdm(enumerate(val_loader)):
val_data = batch.to(device)
result_dic = Evaluator.evaluate(autoencoder, val_data, loss_func, **eval_dic)
eval_value_list.append(result_dic["evaluation"].item())
# end for
avg_eval_value = sum(eval_value_list) / len(eval_value_list)
if not args["have_val_set"]:
avg_eval_value = avg_train_loss
# save checkpoint
checkpoint_path = osp.join(logdir, "latest.pth")
if args["use_scheduler"]:
Saver.save_checkpoint(autoencoder, optimizer, checkpoint_path, scheduler=scheduler)
else:
Saver.save_checkpoint(autoencoder, optimizer, checkpoint_path)
if epoch % args["epoch_gap_for_save"] == 0:
checkpoint_path = os.path.join(logdir, "epoch_" + str(epoch) + ".pth")
Saver.save_best_weights(autoencoder, checkpoint_path)
# save best model based on avg_eval_value
if args["eval_criteria"] in ["jsd", "loss_func", "mmd"]:
better = avg_eval_value < best_eval_value
elif args["eval_criteria"] in ["cov"]:
better = avg_eval_value > best_eval_value
else:
raise Exception("Unknown eval_criteria")
if better:
best_eval_value = avg_eval_value
best_epoch = epoch
Saver.save_best_weights(autoencoder, model_path)
# save best model based on avg_train_loss
if avg_train_loss < best_train_loss:
best_train_loss = avg_train_loss
best_epoch_based_on_train_loss = epoch
if args["evaluator"] != "based_on_train_loss":
Saver.save_best_weights(autoencoder, best_train_loss_model_path)
# report
train_log = "Epoch {}| train_loss : {}\n".format(epoch, avg_train_loss)
eval_log = "Epoch {}| eval_value : {}\n".format(epoch, avg_eval_value)
eval_best_log = "Best epoch {}| best eval value: {}\n".format(best_epoch, best_eval_value)
best_train_loss_log = "Best_train_loss epoch {}| best train loss : {}\n".format(
best_epoch_based_on_train_loss, best_train_loss
)
with open(train_log_path, "a") as fp:
fp.write(train_log)
with open(eval_log_path, "a") as fp:
fp.write(eval_log)
with open(best_eval_log_path, "w") as fp:
fp.write(eval_best_log)
with open(best_train_log_path, "w") as fp:
fp.write(best_train_loss_log)
print(train_log)
print(eval_log)
print(eval_best_log)
print(best_train_loss_log)
if len(rec_train_loss_list) > 0:
rec_train_log = "Epoch {}| rec_train_loss : {}\n".format(epoch, avg_rec_train_loss)
with open(rec_train_log_path, "a") as fp:
fp.write(rec_train_log)
print(rec_train_log)
if len(reg_train_loss_list) > 0:
reg_train_log = "Epoch {}| reg_train_loss : {}\n".format(epoch, avg_reg_train_loss)
with open(reg_train_log_path, "a") as fp:
fp.write(reg_train_log)
print(reg_train_log)
if ("empty_cache_epoch" in args.keys()) and args["empty_cache_epoch"]:
torch.cuda.empty_cache()
print("---------------------------------------------------------------------------------------")
# end for
finish_time = time.time()
total_runtime = finish_time - start_time
total_runtime = time.strftime("%H:%M:%S", time.gmtime(total_runtime))
runtime_log = "total runtime (hour:min:sec): {}".format(total_runtime)
print("total_runtime:", total_runtime)
with open(train_log_path, "a") as fp:
fp.write(runtime_log)
print("Saved checkpoints and logs in: ", logdir)
if __name__ == "__main__":
main()